five

Data from: Misuse of bird digital distribution maps creates reversed spatial diversity patterns in the Amazon|鸟类分布数据集|生态学研究数据集

收藏
DataONE2017-05-05 更新2024-06-26 收录
鸟类分布
生态学研究
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
It is well known that bird richness in the Amazon is greater in upland forests and that seasonally flooded forest is particularly species poor. However, the misleading pattern of greater bird richness in seasonally flooded forest has emerged seemingly unnoticed numerous times in richness maps in the literature. We hypothesize that commission errors in digital distribution maps (DDMs) are the cause behind the misleading richness pattern. In the Amazon, commission errors are a consequence of the different methodological treatment given to large-ranged versus small-ranged habitat specialists when mapping distributions. DDMs of 1007 Amazonian birds were examined, and maps that had commission errors were corrected. We generated two richness maps, one from the overlay of original DDMs and another from the overlay of the corrected ones. We identified 291 species whose distribution maps had errors. In the original data, seasonally flooded forests showed higher species richness than upland forest, but this pattern was reverted in the corrected richness map. Commission errors were 35 times more likely in the seasonally flooded forest. We conclude that DDMs accurately portray the distribution of single species in the Amazon. Commission errors in individual maps, however, accumulate when they are overlaid, explaining the misleading pattern for birds in the Amazon. DDMs can continue to be used mapping richness, as long as, at a regional scale: (1) basic map refinements are carried, or (2) only small-range species are used for mapping species richness.
创建时间:
2017-05-05
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

THUCNews

THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。本次比赛数据集在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。提供训练数据共832471条。

github 收录

FSDD

FSDD(Free Spoken Digit Dataset)是一个开源的语音数据集,包含由不同说话者朗读的数字0到9的音频文件。该数据集旨在用于语音识别和机器学习算法的训练和测试。

github.com 收录

Coffee_Shop_Sales

该数据集包含了咖啡店的详细交易信息,包括交易ID、日期、时间、店铺编号、位置、产品类别、类型、名称、价格、月份、日期、星期和小时等属性。数据集用于分析咖啡店的销售情况,如收入和交易量的变化趋势。

github 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录