five

IMU raw and processed data for computing human joint angles|人体运动分析数据集|传感器数据处理数据集

收藏
Mendeley Data2024-03-27 更新2024-06-29 收录
人体运动分析
传感器数据处理
下载链接:
https://ieee-dataport.org/open-access/imu-raw-and-processed-data-computing-human-joint-angles
下载链接
链接失效反馈
资源简介:
The goal of this study was to compute the relative angle of human joints such as the knee flex/extension angle using two IMUs. To do so, we utilized two 6-axis (accelerometer, gyroscope) low-cost IMUs (MPU6050, TDK-Invensense, CA, USA) that were mounted on a custom developed test apparatus that replicated the human knee motion. The custom test apparatus contained a single motor that repeatedly rotated one of the IMUs from 0 ~ 180 degrees at a one of three predefined speeds (slow - max speed of 25 deg/s, medium - max speed of 100 deg/s, fast = max speed of 200 deg/s) about one of the three rotation axes (yaw - rotation about gravity vector, pitch - rotation orthogonal to yaw and roll, roll - rotation orthogonal to yaw and pitch) for 25 minutes. One IMU was stationary and mounted securely on the side of the test apparatus while the other IMU was mounted on the motor axis and rotated about the motor-axis. The motor speed could be programmed via a microcontroller. The rotation axis could be changed by re-configuring the orientation of the IMUs. An optical encoder, which was placed on the motor shaft, was used to measure the true rotated angle. As the test apparatus rotated the IMU, raw accelerometer and gyroscopic data from the two IMUs as well as the encoder data were collected using a microcontroller. Five computational algorithms (i.e., accelerometer inclination angle, gyroscopic integration, Complementary Filter, Kalman Filter, Digital Motion Processing) IMU data were used (see https://github.com/ssong47/get_joint_angles_using_imus) to calculated the relative angle between the two IMUs. These computed angles were compared to the gold standard (i.e., encoder angle). A total of 9 trials were collected = three rotation axes (yaw, pitch, roll) x three speeds (slow, medium, fast). Each trial contained two phases: 1) a short calibration phase where the IMUs were stationary and placed such that the origins were parallel to each other, and 2) test phase when the one of the IMUs started to move at the pre-defined speed and rotation axis.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

CosyVoice 2

CosyVoice 2是由阿里巴巴集团开发的多语言语音合成数据集,旨在通过大规模多语言数据集训练,实现高质量的流式语音合成。数据集通过有限标量量化技术改进语音令牌的利用率,并结合预训练的大型语言模型作为骨干,支持流式和非流式合成。数据集的创建过程包括文本令牌化、监督语义语音令牌化、统一文本-语音语言模型和块感知流匹配模型等步骤。该数据集主要应用于语音合成领域,旨在解决高延迟和低自然度的问题,提供接近人类水平的语音合成质量。

arXiv 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录