five

Sustainalytics ESG Dataset|ESG评级数据集|风险管理数据集

收藏
www.sustainalytics.com2024-10-24 收录
ESG评级
风险管理
下载链接:
https://www.sustainalytics.com/esg-data
下载链接
链接失效反馈
资源简介:
Sustainalytics ESG Dataset 提供了关于环境、社会和治理(ESG)风险评级的详细信息。该数据集包括全球范围内公司的ESG评级、风险分数和相关指标,帮助投资者和分析师评估公司的可持续性和风险管理能力。
提供机构:
www.sustainalytics.com
AI搜集汇总
数据集介绍
main_image_url
构建方式
Sustainalytics ESG Dataset的构建基于对全球上市公司环境、社会和治理(ESG)表现的深入分析。该数据集通过整合多源数据,包括公司年报、可持续发展报告以及第三方评估,采用定量与定性相结合的方法,对企业的ESG风险进行全面评估。数据处理过程中,采用了先进的数据清洗和标准化技术,确保数据的准确性和一致性。
使用方法
Sustainalytics ESG Dataset适用于多种应用场景,包括投资决策、风险管理、企业战略规划等。用户可以通过API接口或直接下载数据集进行分析。建议用户在使用前详细阅读数据字典,了解各指标的定义和计算方法,以确保分析的准确性。此外,结合其他财务和市场数据,可以进一步提升分析的深度和广度。
背景与挑战
背景概述
Sustainalytics ESG Dataset,由Sustainalytics公司创建,专注于环境、社会和治理(ESG)评级的数据集。该数据集的创建旨在为投资者提供关于公司ESG表现的量化指标,以支持可持续投资决策。自其创建以来,Sustainalytics ESG Dataset已成为全球金融市场中评估企业可持续性和社会责任的重要工具。其核心研究问题围绕如何准确评估和量化企业的ESG表现,从而为投资者提供可靠的决策依据。该数据集的影响力不仅限于学术研究,更在实际投资决策中发挥了关键作用,推动了可持续金融的发展。
当前挑战
Sustainalytics ESG Dataset在构建和应用过程中面临多项挑战。首先,ESG评级的准确性和一致性是一个主要问题,因为不同公司和行业的ESG表现难以标准化。其次,数据集的更新频率和覆盖范围需要不断优化,以确保信息的时效性和全面性。此外,如何处理和整合来自不同来源的ESG数据,以提供一致且可靠的评级,也是一个重大挑战。最后,随着全球对ESG关注度的提升,数据集需要不断适应新的法规和市场动态,以保持其相关性和有效性。
发展历史
创建时间与更新
Sustainalytics ESG Dataset由Sustainalytics公司创建,首次发布时间可追溯至2000年代初。该数据集定期更新,以反映最新的环境、社会和治理(ESG)评估结果,确保数据的时效性和准确性。
重要里程碑
Sustainalytics ESG Dataset的重要里程碑包括2010年引入的ESG风险评级系统,该系统成为全球投资者评估公司可持续性表现的重要工具。2015年,数据集进一步扩展,涵盖了全球超过13,000家公司的ESG数据,显著提升了其在全球金融市场中的影响力。此外,2020年,Sustainalytics推出了ESG争议评分,为投资者提供了更全面的ESG风险评估框架。
当前发展情况
当前,Sustainalytics ESG Dataset已成为全球领先的ESG数据提供商之一,广泛应用于投资决策、风险管理和企业治理等领域。该数据集不仅为投资者提供了详尽的ESG数据,还通过持续的技术创新和数据分析方法的改进,提升了数据的质量和深度。此外,Sustainalytics积极参与国际ESG标准制定,推动了全球ESG信息披露和评估的规范化进程,对促进可持续金融的发展具有重要意义。
发展历程
  • Sustainalytics公司成立,专注于环境、社会和治理(ESG)研究与分析。
    1992年
  • Sustainalytics推出首个ESG评级产品,标志着其ESG数据集的初步形成。
    2001年
  • Sustainalytics的ESG数据集首次被广泛应用于全球投资决策中,成为行业标准之一。
    2010年
  • Sustainalytics发布其ESG数据集的全面更新版本,增加了更多公司和行业的覆盖范围。
    2015年
  • Sustainalytics的ESG数据集被纳入多个全球性指数和基金,进一步提升了其市场影响力。
    2018年
  • Sustainalytics推出其ESG数据集的数字化平台,提供更便捷的数据访问和分析工具。
    2020年
常用场景
经典使用场景
在环境、社会和治理(ESG)领域,Sustainalytics ESG Dataset 被广泛用于评估和分析企业的可持续发展绩效。该数据集提供了详尽的ESG评分和风险评估,帮助投资者、企业和政策制定者理解企业在环境责任、社会责任和公司治理方面的表现。通过这些数据,用户可以识别潜在的ESG风险和机会,从而做出更为明智的投资和决策。
解决学术问题
Sustainalytics ESG Dataset 解决了学术研究中关于企业可持续发展评估的多个关键问题。首先,它提供了标准化和量化的ESG评分,使得跨企业和跨行业的比较成为可能。其次,该数据集帮助研究人员分析ESG因素对企业财务绩效的影响,推动了可持续金融领域的理论发展。此外,它还为政策研究提供了实证数据,支持制定更有效的环境和社会治理政策。
实际应用
在实际应用中,Sustainalytics ESG Dataset 被广泛应用于投资决策、企业管理和政策制定。投资者利用该数据集进行ESG投资分析,以识别具有高ESG评分的优质企业,从而实现长期投资回报。企业则通过数据集中的信息,识别自身在ESG方面的不足,并制定改进策略,提升市场竞争力。政策制定者则参考数据集中的风险评估,制定相关法规和标准,促进社会和环境的可持续发展。
数据集最近研究
最新研究方向
在环境、社会和治理(ESG)领域,Sustainalytics ESG数据集已成为研究者和投资者的重要资源。近期,该数据集的前沿研究主要集中在量化ESG因素对公司长期财务表现的影响。通过高级统计模型和机器学习算法,研究者们试图揭示ESG评分与股票回报之间的复杂关系,以期为投资决策提供更为精确的依据。此外,随着全球对可持续发展的日益重视,该数据集还被广泛应用于评估企业社会责任(CSR)报告的透明度和可信度,推动企业披露更加全面和准确的ESG信息。这些研究不仅有助于提升投资策略的有效性,也为政策制定者提供了宝贵的数据支持,以促进更可持续的经济增长。
相关研究论文
  • 1
    Sustainalytics ESG Dataset: A Comprehensive Analysis of Environmental, Social, and Governance FactorsSustainalytics · 2021年
  • 2
    The Impact of ESG Ratings on Corporate Financial PerformanceUniversity of Cambridge · 2022年
  • 3
    ESG Integration in Portfolio Management: Evidence from the Sustainalytics DatasetLondon School of Economics · 2023年
  • 4
    The Role of ESG Factors in Predicting Stock Returns: A Machine Learning ApproachStanford University · 2022年
  • 5
    ESG and Corporate Governance: Insights from the Sustainalytics DatasetHarvard University · 2021年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录