five

Data from: Temporal regularity increases with repertoire complexity in the Australian pied butcherbird’s song|鸟类歌唱数据集|音乐理论数据集

收藏
DataONE2016-09-22 更新2024-06-26 收录
鸟类歌唱
音乐理论
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Music maintains a characteristic balance between repetition and novelty. Here, we report a similar balance in singing performances of free-living Australian pied butcherbirds. Their songs include many phrase types. The more phrase types in a bird's repertoire, the more diverse the singing performance can be. However, without sufficient temporal organization, avian listeners may find diverse singing performances difficult to perceive and memorize. We tested for a correlation between the complexity of song repertoire and the temporal regularity of singing performance. We found that different phrase types often share motifs (notes or stereotyped groups of notes). These shared motifs reappeared in strikingly regular temporal intervals across different phrase types, over hundreds of phrases produced without interruption by each bird. We developed a statistical estimate to quantify the degree to which phrase transition structure is optimized for maximizing the regularity of shared motifs. We found that transition probabilities between phrase types tend to maximize regularity in the repetition of shared motifs, but only in birds of high repertoire complexity. Conversely, in birds of low repertoire complexity, shared motifs were produced with less regularity. The strong correlation between repertoire complexity and motif regularity suggests that birds possess a mechanism that regulates the temporal placement of shared motifs in a manner that takes repertoire complexity into account. We discuss alternative musical, mechanistic and ecological explanations to this effect.
创建时间:
2016-09-22
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录