allenai/c4|网络爬取数据集|文本分析数据集
收藏数据集概述:C4
基本信息
- 数据集名称: C4
- 语言: 多语言,包括但不限于af, am, ar, az, be, bg, bn, ca, ceb, co, cs, cy, da, de, el, en, eo, es, et, eu, fa, fi, fil, fr, fy, ga, gd, gl, gu, ha, haw, he, hi, hmn, ht, hu, hy, id, ig, is, it, iw, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mi, mk, ml, mn, mr, ms, mt, my, ne, nl, no, ny, pa, pl, ps, pt, ro, ru, sd, si, sk, sl, sm, sn, so, sq, sr, st, su, sv, sw, ta, te, tg, th, tr, uk, und, ur, uz, vi, xh, yi, yo, zh, zu
- 许可证: odc-by
- 多语言性: 多语言
数据集结构
- 特征:
text
: 数据类型为字符串timestamp
: 数据类型为字符串url
: 数据类型为字符串
数据集大小
- 大小类别: 包括n<1K, 1K<n<10K, 10K<n<100K, 100K<n<1M, 1M<n<10M, 10M<n<100M, 100M<n<1B, 1B<n<10B
任务类别
- 任务:
- 文本生成
- 填充掩码
- 任务ID:
- 语言建模
- 掩码语言建模
数据集配置
- 配置名称: 多个配置,包括en, en.noblocklist, realnewslike, en.noclean等
- 数据文件: 根据不同配置,数据文件路径不同,如en配置下,训练数据路径为
en/c4-train.*.json.gz
,验证数据路径为en/c4-validation.*.json.gz
数据集详细信息
-
配置名称: en
- 训练数据: 364868892个样本,828589180707字节
- 验证数据: 364608个样本,825767266字节
- 下载大小: 326778635540字节
- 数据集大小: 1657178361414字节
-
配置名称: en.noblocklist
- 训练数据: 393391519个样本,1029628201361字节
- 验证数据: 393226个样本,1025606012字节
- 下载大小: 406611392434字节
- 数据集大小: 2059256402722字节
-
配置名称: realnewslike
- 训练数据: 13799838个样本,38165657946字节
- 验证数据: 13863个样本,37875873字节
- 下载大小: 15419740744字节
- 数据集大小: 76331315892字节
-
配置名称: en.noclean
- 训练数据: 1063805381个样本,6715509699938字节
- 验证数据: 1065029个样本,6706356913字节
- 下载大小: 2430376268625字节
- 数据集大小: 6722216056851字节

Google Scholar
Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。
scholar.google.com 收录
马达加斯加岛 – 世界地理数据大百科辞条
马达加斯加岛在非洲的东南部,位于11o56′59″S - 25o36′25″S及43o11′18″E - 50o29′36″E之间。通过莫桑比克海峡与位于非洲大陆的莫桑比克相望,最近距离为415千米。临近的岛屿分别为西北部的科摩罗群岛、北部的塞舌尔群岛、东部的毛里求斯岛和留尼汪岛等。在google earth 2015年遥感影像基础上研发的马达加斯加海岸线数据集表明,马达加斯加岛面积591,128.68平方千米,其中马达加斯加本岛面积589,015.06平方千米,周边小岛面积为2,113.62平方千米。马达加斯加本岛是非洲第一大岛,是仅次于格陵兰、新几内亚岛和加里曼丹岛的世界第四大岛屿。岛的形状呈南北走向狭长纺锤形,南北向长1,572千米;南北窄,中部宽,最宽处达574千米。海岸线总长16,309.27千米, 其中马达加斯加本岛海岸线长10,899.03千米,周边小岛海岸线长5,410.24千米。马达加斯加岛属于马达加斯加共和国。全国共划分22个区,119个县。22个区分别为:阿那拉芒加区,第亚那区,上马齐亚特拉区,博爱尼区,阿齐那那那区,阿齐莫-安德列发那区,萨瓦区,伊达西区,法基南卡拉塔区,邦古拉法区,索非亚区,贝齐博卡区,梅拉基区,阿拉奥特拉-曼古罗区,阿那拉兰基罗富区,阿莫罗尼马尼亚区,法土法韦-非图韦那尼区,阿齐莫-阿齐那那那区,伊霍罗贝区,美那贝区,安德罗伊区和阿诺西区。首都安塔那那利佛(Antananarivo)位于岛屿的中东部。马达加斯加岛是由火山及喀斯特地貌为主。贯穿海岛的是巨大火山岩山体-察腊塔纳山,其主峰马鲁穆库特鲁山(Maromokotro)海拔2,876米,是全国最高峰。马达加斯加自然景观垂直地带性分异显著,是热带雨林和热带草原广布的地区。岛上大约有20多万种动植物,其中包括马达加斯加特有物种狐猴(Lemur catta)、马达加斯加国树猴面包树(Adansonia digitata L.)等。
国家对地观测科学数据中心 收录
全国 1∶200 000 数字地质图(公开版)空间数据库
As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.
DataCite Commons 收录
YOLO Drone Detection Dataset
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。
github 收录
HIT-UAV
HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。
github 收录