iNaturalist 2017|图像识别数据集|生物多样性数据集
收藏中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
CMU-MOSI
CMU-MOSI数据集包括了从93个YouTube的视频中获取的2199个独白类型的短视频片段。每个片段都是一个独立的多模态示例,其中图像、文本和音频占比是均匀的,情感分数取值为[-3,+3],表示从强负向到强正向情感。
DataCite Commons 收录
MedTrinity-25M
MedTrinity-25M是由华中科技大学、加州大学圣克鲁兹分校、哈佛大学和斯坦福大学联合创建的一个大规模多模态医学数据集,包含超过2500万张图像,涉及10种模态和65种疾病。数据集通过自动化的数据构建流程生成,不依赖于配对的文本描述,而是通过专家模型和知识库增强的多模态大型语言模型生成多粒度视觉和文本注释。数据集的创建过程包括从90多个在线资源收集数据,应用专家模型识别感兴趣区域(ROIs),并构建知识库以生成详细的文本描述。MedTrinity-25M旨在支持广泛的医学多模态任务,如图像标注和报告生成,以及视觉中心的任务如分类和分割,推动医学领域基础模型的发展。
arXiv 收录
NASA Battery Dataset
用于预测电池健康状态的数据集,由NASA提供。
github 收录