five

GEOM-DRUGS_ADiT|分子建模数据集|材料科学数据集

收藏
huggingface2025-05-12 更新2025-05-13 收录
分子建模
材料科学
下载链接:
https://huggingface.co/datasets/chaitjo/GEOM-DRUGS_ADiT
下载链接
链接失效反馈
资源简介:
GEOM-DRUGS数据集来源于论文《All-atom Diffusion Transformers: Unified generative modelling of molecules and materials》,该数据集用于分子和材料的统一生成建模研究。
创建时间:
2025-05-12
原始信息汇总

GEOM-DRUGS数据集概述

数据集来源

  • 论文标题:All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
  • 论文链接:https://www.arxiv.org/abs/2503.03965
  • 作者:Chaitanya K. Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop Sriram*, Zachary W. Ulissi*
  • 机构:FAIR Chemistry at Meta

原始数据源

  • https://github.com/cvignac/MiDi?tab=readme-ov-file#datasets
  • https://github.com/learningmatter-mit/geom

相关资源

  • GitHub项目:https://github.com/facebookresearch/all-atom-diffusion-transformer

许可信息

  • 许可证类型:MIT
AI搜集汇总
数据集介绍
main_image_url
构建方式
GEOM-DRUGS_ADiT数据集的构建源于对分子和材料统一生成建模的深入研究。该数据集整合了GEOM-DRUGS的原始数据,通过先进的扩散变换器技术对分子和材料进行全原子级别的建模。数据来源包括公开的GEOM数据库和MiDi项目,确保了数据的广泛覆盖和高质量。构建过程中采用了严格的标准化流程,确保每个数据点的准确性和一致性,为后续研究提供了可靠的基础。
特点
GEOM-DRUGS_ADiT数据集以其全原子级别的建模能力脱颖而出,涵盖了广泛的分子和材料结构。数据集中的每个样本都经过精确的扩散变换器处理,能够捕捉复杂的原子间相互作用和空间构型。其多样化的数据范围从简单有机分子到复杂材料体系,为生成建模和多尺度模拟研究提供了丰富的资源。数据的高精度和一致性使其成为计算化学和材料科学领域的理想选择。
使用方法
使用GEOM-DRUGS_ADiT数据集时,研究人员可通过GitHub提供的工具链直接加载和处理数据。数据集支持多种格式,便于与主流计算化学软件兼容。用户可以利用预训练的扩散变换器模型进行分子和材料的生成与优化,或基于现有数据开展新的建模研究。详细的文档和示例代码降低了使用门槛,使研究者能够快速上手并应用于实际问题。
背景与挑战
背景概述
GEOM-DRUGS_ADiT数据集由Meta公司的FAIR Chemistry团队于2024年提出,核心研究团队包括Chaitanya K. Joshi、Xiang Fu等学者。该数据集源自论文《All-atom Diffusion Transformers: Unified generative modelling of molecules and materials》,旨在解决分子与材料统一生成建模这一前沿科学问题。作为分子生成领域的重要资源,它为扩散变换器在原子尺度上的生成任务提供了标准化基准,显著推动了药物发现和材料设计领域的算法发展。
当前挑战
该数据集面临的主要挑战体现在两个方面:在领域问题层面,分子生成需要精确捕捉原子间的复杂相互作用与三维空间构型,这对生成模型的几何保真度提出了极高要求;在构建过程层面,原始数据的多源异构性(来自GEOM和MiDi等不同数据库)导致数据清洗与标准化面临巨大挑战,需要开发专门的预处理流程来确保数据质量与一致性。
常用场景
经典使用场景
在分子生成与材料设计领域,GEOM-DRUGS_ADiT数据集为研究者提供了丰富的全原子结构数据。该数据集常用于训练扩散变换模型,支持从随机噪声到稳定分子构象的生成过程,尤其适用于探索药物分子和功能材料的潜在空间分布。通过整合几何约束与能量最小化原则,研究人员能够高效地模拟复杂分子系统的动态行为。
解决学术问题
该数据集有效解决了分子生成模型中三维构象多样性不足的瓶颈问题。传统方法受限于二维图表示或简化力场,而GEOM-DRUGS_ADiT提供的全原子坐标数据,使扩散变换模型能够精确捕捉分子扭转角、非共价相互作用等关键特征。这项工作为统一处理有机分子和无机材料体系建立了新的基准,推动了生成式AI在计算化学中的应用边界。
衍生相关工作
基于此数据集开发的All-atom Diffusion Transformer框架,已衍生出多个分子动力学与性质预测的改进模型。例如后续研究提出的SE(3)-Equivariant扩散方法增强了旋转不变性处理,而Hierarchical Diffusion架构则实现了从粗粒度到原子尺度的多级生成。这些工作持续推动着生成模型在计算化学中的精度与效率突破。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录