five

boat|船舶检测数据集|计算机视觉数据集

收藏
github2024-10-24 更新2024-11-08 收录
船舶检测
计算机视觉
下载链接:
https://github.com/Qunmasj-Vision-Studio/boat27
下载链接
链接失效反馈
资源简介:
本项目所使用的数据集名为“boat”,旨在为改进YOLOv11的船舶类型检测系统提供丰富的训练素材。该数据集包含六个主要类别,分别为:散货船、集装箱船、渔船、一般货船、矿石运输船和客船。这些类别涵盖了船舶运输行业的多样性,确保了模型在不同类型船舶识别上的全面性和准确性。数据集中的图像经过精心挑选和标注,确保每个类别的样本都具有代表性。通过使用“boat”数据集,改进后的YOLOv11模型将能够更准确地识别和分类不同类型的船舶,从而提高船舶监测和管理的效率。
创建时间:
2024-10-24
原始信息汇总

船舶类型检测数据集

数据集概述

本数据集名为“boat”,旨在为改进YOLOv11的船舶类型检测系统提供丰富的训练素材。数据集包含六个主要类别,分别为:散货船、集装箱船、渔船、一般货船、矿石运输船和客船。这些类别涵盖了船舶运输行业的多样性,确保了模型在不同类型船舶识别上的全面性和准确性。

数据集详细信息

  • 类别数:6
  • 类别名
    • 散货船
    • 集装箱船
    • 渔船
    • 一般货船
    • 矿石运输船
    • 客船

数据集特点

  • 图像多样性:数据集中的图像经过精心挑选和标注,确保每个类别的样本都具有代表性。
  • 应用场景:适用于目标检测任务,特别适用于船舶类型检测系统的训练和评估。

数据集用途

通过使用“boat”数据集,改进后的YOLOv11模型将能够更准确地识别和分类不同类型的船舶,从而提高船舶监测和管理的效率。这一数据集不仅为模型的训练提供了坚实的基础,也为未来在船舶类型检测领域的研究和应用奠定了重要的理论和实践基础。

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集名为‘boat’,旨在为改进YOLOv11的船舶类型检测系统提供丰富的训练素材。数据集包含六个主要类别,分别为:散货船、集装箱船、渔船、一般货船、矿石运输船和客船。这些类别涵盖了船舶运输行业的多样性,确保了模型在不同类型船舶识别上的全面性和准确性。数据集中的图像经过精心挑选和标注,确保每个类别的样本都具有代表性。通过使用‘boat’数据集,改进后的YOLOv11模型将能够更准确地识别和分类不同类型的船舶,从而提高船舶监测和管理的效率。
特点
‘boat’数据集的特点在于其多样性和代表性。数据集包含了多种类型的船舶图像,涵盖了不同的角度、光照条件和背景环境。这些数据的多样性为模型的训练提供了丰富的样本,有助于提高模型的泛化能力。此外,数据集的标注质量高,确保了每个类别的样本都具有代表性,从而为模型的训练提供了坚实的基础。通过使用该数据集,改进后的YOLOv11模型将能够在实际应用中实现更高的准确率和更快的检测速度。
使用方法
使用‘boat’数据集进行模型训练时,首先需要按照提供的训练教程加载数据集,并运行train.py脚本开始训练。训练过程中,模型将通过不断优化权重参数,提高对不同类型船舶的识别能力。训练完成后,可以通过加载训练好的模型权重文件,进行图片、视频或摄像头的实时识别。识别结果可以自动保存到指定目录,并支持导出为Excel格式,便于后续分析和处理。通过这种方式,用户可以充分利用‘boat’数据集,提升船舶类型检测系统的性能。
背景与挑战
背景概述
随着全球航运业的迅猛发展,船舶类型的自动检测与识别成为了海洋监测、海洋安全及智能交通系统中的重要研究课题。传统的船舶识别方法依赖于人工观察和经验判断,效率低下且易受人为因素影响,难以满足现代化海洋管理的需求。因此,开发一种高效、准确的船舶类型检测系统显得尤为重要。近年来,深度学习技术的飞速发展为目标检测领域带来了新的机遇,尤其是YOLO(You Only Look Once)系列模型在实时目标检测任务中表现出了优异的性能。本研究旨在基于改进的YOLOv11模型,构建一个高效的船舶类型检测系统。YOLOv11作为YOLO系列的最新版本,结合了多种先进的网络结构和算法优化,具备更高的检测精度和更快的推理速度。通过对YOLOv11的改进,我们将进一步提升其在复杂海洋环境中对船舶类型的识别能力。为此,我们将利用特定的数据集,该数据集包含了多种类型的船舶图像,涵盖了不同的角度、光照条件和背景环境。这些数据的多样性将为模型的训练提供丰富的样本,有助于提高模型的泛化能力。
当前挑战
船舶类型检测系统在构建过程中面临多重挑战。首先,海洋环境的复杂性使得船舶图像数据具有高度的多样性和不确定性,包括不同的光照条件、天气状况和背景干扰,这些因素增加了模型训练的难度。其次,船舶类型的多样性要求数据集必须包含广泛且具有代表性的样本,以确保模型能够准确识别各种类型的船舶。此外,实时检测的需求对模型的推理速度提出了高要求,如何在保证高精度的同时提升检测速度是一个关键挑战。最后,数据集的构建和标注过程需要大量的人力和时间投入,确保每个类别的样本都经过精心挑选和标注,以提高模型的训练效果。这些挑战需要在数据集的设计和模型的优化过程中得到有效解决,以实现高效、准确的船舶类型检测系统。
常用场景
经典使用场景
该数据集‘boat’主要用于改进YOLOv11模型的船舶类型检测系统。其经典使用场景包括海洋监测、海洋安全和智能交通系统中的船舶类型自动检测与识别。通过提供多样化的船舶图像,涵盖不同角度、光照条件和背景环境,该数据集为模型的训练提供了丰富的样本,有助于提高模型在复杂海洋环境中的识别能力。
解决学术问题
该数据集解决了传统船舶识别方法依赖人工观察和经验判断的低效问题。通过提供高质量、多样化的船舶图像数据,它支持深度学习模型如YOLOv11的训练,显著提升了船舶类型检测的准确性和效率。这不仅推动了目标检测技术在海洋监测领域的应用,还为智能交通管理和船舶调度提供了技术支持,具有重要的学术研究价值和实际应用意义。
衍生相关工作
基于‘boat’数据集,研究者们开发了多种改进的YOLOv11模型,这些模型在船舶类型检测任务中表现优异。此外,该数据集还促进了相关领域的研究,如目标检测、实例分割和图像分类等。通过不断优化模型的识别能力,研究者们期望在实际应用中实现更高的准确率和更快的检测速度,为船舶行业的智能化发展贡献力量。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国行政区划shp数据

   中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。   中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。

CnOpenData 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

中亚主要国家的原油资源的储量、产量、消费量及其占世界比重(1985-2016)

中亚五国中,石油资源主要分布在哈萨克斯坦、乌兹别克斯坦、土库曼斯坦三个国家。根据BP世界能源统计年鉴,经整理、抽取、计算和汇总后,形成中亚主要国家(哈萨克斯坦、乌兹别克斯坦、土库曼斯坦)原油资源的储量、产量、消费量及其占世界比重的统计表。 主要指标包括: (1)储量,1991-2016年,单位:百万吨 (2)产量,1985-2016年,单位:百万吨 (3)储产比,1991-2016年,单位:百万吨 (4)消费量,1985-2016年,单位:百万吨 (5)产消差额,1985-2016年,单位:百万吨 此外,以上数据均包括中亚地区的哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、三国汇总以及世界总量的情况。

地球大数据科学工程 收录