five

UniMed|医学成像数据集|多模态数据数据集

收藏
arXiv2024-12-14 更新2024-12-17 收录
医学成像
多模态数据
下载链接:
https://github.com/mbzuai-oryx/UniMed-CLIP
下载链接
链接失效反馈
资源简介:
UniMed是一个大规模、开源的多模态医学数据集,由穆罕默德·本·扎耶德人工智能大学等机构创建,包含超过530万张图像-文本对,涵盖六种不同的医学成像模态:X射线、CT、MRI、超声、病理和眼底。数据集通过利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式,并结合现有的医学图像-文本数据,实现了可扩展的视觉-语言模型(VLM)预训练。UniMed旨在解决医学领域中公开可用的大规模图像-文本数据稀缺的问题,适用于多种医学成像任务,如零样本分类和跨模态泛化。
提供机构:
穆罕默德·本·扎耶德人工智能大学
创建时间:
2024-12-14
原始信息汇总

UniMed-CLIP: Towards a Unified Image-Text Pretraining Paradigm for Diverse Medical Imaging Modalities

数据集概述

数据集名称

UniMed-CLIP

数据集描述

UniMed-CLIP 是一个用于多种医学影像模态的统一图像-文本预训练范式的数据集。该数据集包含超过 5.3 百万的图像-文本对,涵盖六种不同的医学影像模态:X-ray、CT、MRI、Ultrasound、Pathology 和 Fundus。

数据集特点

  1. 多模态数据集:UniMed 数据集包含六种不同的医学影像模态,提供了丰富的多模态数据。
  2. 大规模数据:数据集包含超过 5.3 百万的图像-文本对,为训练通用医学视觉-语言模型提供了坚实的基础。
  3. 开放源代码:提供了详细的代码和注释文件,用于准备 UniMed 数据集,促进医学视觉-语言模型的开源研究。

数据集应用

UniMed-CLIP 数据集主要用于训练和评估医学视觉-语言模型(VLMs),特别是在零样本评估中表现出色。

数据集贡献

  1. UniMed 数据集:一个开放源代码的大规模多模态医学数据集,包含超过 5.3 百万的样本,覆盖六种不同的医学模态。
  2. UniMed-CLIP VLMs:基于 UniMed 数据集训练的对比学习视觉-语言模型,显著优于现有的通用 VLMs,并在多种医学模态上表现出色。
  3. 广泛的评估和分析:提供了对不同设计选择的消融实验,并开源了训练代码、数据集和模型检查点,以促进医学 VLMs 的进一步研究。

数据集性能

方法 论文链接 X-ray Retinal-Fundus CT MRI US Histopathology 平均分
BioMedCLIP Link 55.43 22.87 43.99 64.59 49.20 54.50 49.02
PMC-CLIP Link 52.64 25.84 66.06 63.68 62.51 53.56 53.37
UniMed-CLIP Link 68.78 31.23 85.54 68.83 68.64 59.96 61.63

数据集更新

  • 2024年12月13日:发布了用于准备 UniMed 预训练数据集的注释和代码脚本,以及 UniMed-CLIP 的训练和推理代码,以及预训练的检查点。

数据集准备

提供了详细的说明和注释文件,用于准备 UniMed 数据集,具体内容请参考 UniMed-DATA.md

预训练模型

提供了三个 UniMed-CLIP 模型的权重,具体信息如下:

model_name text encoder pretrained_weights 分辨率 GPUs 21个数据集的平均分
ViT-B-16-quickgelu BiomedNLP-BiomedBERT-base-uncased-abstract unimed_clip_vit_b16 224 16 x A100 (40G) 61.63
ViT-L-14-quickgelu BiomedNLP-BiomedBERT-large-uncased-abstract unimed_clip_vit_l14_large_text_encoder 336 16 x A100 (40G) 62.09
ViT-L-14-quickgelu BiomedNLP-BiomedBERT-base-uncased-abstract unimed_clip_vit_l14_base_text_encoder 336 16 x A100 (40G) 64.84

数据集引用

如果使用该数据集,请引用以下论文: bibtex @inproceedings{khattakunimed, title={UniMed-CLIP: Towards a Unified Image-Text Pretraining Paradigm for Diverse Medical Imaging Modalities}, author={khattak, Muhammad Uzair and Kunhimon, Shahina and Muzzamal, Naseer and Khan, Salman and Khan, Fahad Shahbaz}, journal={arXiv:2412.10372}, year={2024} }

AI搜集汇总
数据集介绍
main_image_url
构建方式
UniMed数据集通过一个可扩展的数据收集框架构建,该框架利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式。具体而言,研究团队从公开的医学图像-文本数据集中提取了现有的图像-文本对,并结合了通过LLMs生成的伪图像-文本对,最终形成了包含530万对图像-文本的多模态医学数据集。该数据集涵盖了六种不同的医学成像模态,包括X射线、CT、MRI、超声、病理学和眼底成像。
特点
UniMed数据集的主要特点在于其大规模、开放性和多样性。该数据集包含了超过530万对图像-文本对,覆盖了六种不同的医学成像模态,能够为多模态视觉语言模型的预训练提供丰富的数据支持。此外,UniMed数据集的构建过程中使用了LLMs生成的伪图像-文本对,增强了数据集的多样性和质量,使其在零样本和少样本任务中表现出色。
使用方法
UniMed数据集可用于训练和评估多模态视觉语言模型(VLMs),特别是在医学图像识别和分类任务中。用户可以通过对比学习的方式,利用该数据集进行图像-文本对的预训练,从而提升模型在零样本和少样本任务中的泛化能力。此外,UniMed数据集还提供了训练代码和模型检查点,便于研究者进行进一步的研究和开发。
背景与挑战
背景概述
随着视觉-语言模型(VLMs)在自然图像任务中的显著成功,其在医疗领域的应用潜力逐渐受到关注。然而,医疗领域中公开可用的、大规模的图像-文本数据集的稀缺性限制了VLMs在该领域的广泛应用。现有的医疗VLMs大多依赖于封闭的专有数据集或相对较小的开源数据集,这些数据集的泛化能力有限,且大多数模型仅针对单一或有限的医疗成像领域,限制了其跨模态的适用性。为解决这一问题,UniMed数据集应运而生,由Mohamed bin Zayed University of AI等机构的研究人员开发,于2024年推出。该数据集包含了超过530万张图像-文本对,涵盖了X射线、CT、MRI、超声、病理和眼底成像等六种多样化的医疗成像模态。通过利用大型语言模型(LLMs)将模态特定的分类数据集转换为图像-文本格式,UniMed为视觉-语言模型的预训练提供了强大的数据支持,推动了医疗领域多模态基础模型的研究。
当前挑战
UniMed数据集的构建面临多重挑战。首先,医疗数据的隐私性和敏感性使得数据的收集和标注过程极为复杂,尤其是在涉及患者隐私的情况下。其次,医疗图像与自然图像的差异较大,医疗图像的多样性和复杂性要求模型具备更强的泛化能力。此外,现有医疗数据集的规模较小,且多为单一模态,难以满足大规模预训练的需求。UniMed通过引入LLMs生成伪图像-文本对,解决了医疗领域图像-文本数据稀缺的问题,但其生成的文本质量与多样性仍需进一步优化。最后,如何在保护患者隐私的前提下,确保数据集的开放性和可访问性,也是UniMed面临的重要挑战。
常用场景
经典使用场景
UniMed数据集的经典使用场景在于其为多模态医学图像与文本数据的预训练提供了丰富的资源。通过整合超过530万对图像-文本数据,涵盖X射线、CT、MRI、超声、病理学和眼底图像等多种医学成像模态,UniMed为训练统一的视觉-语言模型(VLM)提供了坚实的基础。其主要应用场景包括零样本分类、图像检索和分割等任务,尤其在医学图像识别领域表现突出。
实际应用
UniMed数据集在实际应用中具有广泛的潜力,尤其是在医学图像的自动诊断和辅助决策系统中。通过训练基于UniMed的视觉-语言模型,医生可以利用这些模型进行零样本分类、图像检索和分割等任务,从而提高诊断的准确性和效率。例如,在放射科、眼科和病理学等领域,UniMed-CLIP模型可以快速识别和分类不同类型的医学图像,帮助医生做出更精准的诊断决策。
衍生相关工作
基于UniMed数据集,许多相关工作得以展开,尤其是在医学视觉-语言模型的预训练和应用方面。例如,UniMed-CLIP模型的成功训练为后续研究提供了参考,推动了更多针对医学图像的多模态模型开发。此外,UniMed的开放性也激发了其他研究者构建类似的多模态医学数据集,进一步丰富了医学图像处理领域的研究资源。相关工作还包括对不同模态数据的融合研究,以及如何利用大规模数据集提升模型的泛化能力。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录

SWaT Dataset

SWaT Dataset是一个用于工业控制系统(ICS)安全研究的数据集,包含了模拟的网络攻击和正常操作的数据。该数据集由新加坡科技设计大学(Singapore University of Technology and Design)发布,旨在帮助研究人员开发和测试用于检测工业控制系统中网络攻击的算法和模型。

itrust.sutd.edu.sg 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录