five

scikit-learn/breast-cancer-wisconsin|医学数据分析数据集|机器学习数据集

收藏
hugging_face2022-06-20 更新2024-03-04 收录
医学数据分析
机器学习
下载链接:
https://hf-mirror.com/datasets/scikit-learn/breast-cancer-wisconsin
下载链接
链接失效反馈
资源简介:
Breast Cancer Wisconsin Diagnostic Dataset(威斯康星州乳腺癌诊断数据集)的特征是从乳腺肿块的细针穿刺(FNA)数字化图像中计算得出的,描述了图像中细胞核的特征。数据集包含ID号、诊断结果(恶性或良性)以及每个细胞核的十个实值特征,如半径、纹理、周长、面积、平滑度、紧密度、凹度、凹点、对称性和分形维度。分离平面是通过使用多表面方法树(MSM-T)分类方法获得的,该方法使用线性规划构建决策树。相关特征是通过在1-4个特征和1-3个分离平面的空间中进行穷举搜索选择的。
提供机构:
scikit-learn
原始信息汇总

Breast Cancer Wisconsin Diagnostic Dataset

描述

特征是从乳腺肿块的细针穿刺(FNA)图像中计算得出的。这些特征描述了图像中细胞核的特征。部分图像可以在这里找到。

分离平面是通过使用多表面方法树(MSM-T)获得的,这是一种使用线性规划构建决策树的分类方法。相关特征是通过在1-4个特征和1-3个分离平面的空间中进行穷举搜索选择的。

属性信息

  • ID number:标识号码
  • Diagnosis:诊断结果(M = 恶性,B = 良性)

每个细胞核计算出十个实值特征:

  • radius:半径(从中心到周边点的平均距离)
  • texture:纹理(灰度值的标准偏差)
  • perimeter:周长
  • area:面积
  • smoothness:平滑度(半径长度的局部变化)
  • compactness:紧密度(周长^2 / 面积 - 1.0)
  • concavity:凹度(轮廓凹部分的严重程度)
  • concave points:凹点(轮廓凹部分的数量)
  • symmetry:对称性
  • fractal dimension:分形维数(“海岸线近似” - 1)
AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集源自威斯康星大学麦迪逊分校的乳腺癌诊断数据,通过数字化乳腺细针穿刺(FNA)图像构建而成。特征提取过程涉及对细胞核图像的分析,涵盖了从图像中计算出的十项实值特征,包括半径、纹理、周长、面积等。这些特征通过多表面方法-树(MSM-T)进行分类,并利用线性规划构建决策树,以选择最具区分性的特征组合。
特点
该数据集的显著特点在于其特征的多样性和精确性,涵盖了从细胞核图像中提取的十项关键特征,这些特征能够有效描述细胞核的形态学特性。此外,数据集中的诊断标签明确区分了恶性(M)和良性(B)病例,为分类任务提供了清晰的目标变量。
使用方法
该数据集适用于多种机器学习任务,尤其是分类问题,可用于训练和验证乳腺癌诊断模型。用户可以通过加载数据集并提取特征和标签,利用这些数据进行模型训练。常见的使用场景包括但不限于支持向量机、决策树、随机森林等分类算法的实现与优化。
背景与挑战
背景概述
乳腺癌是全球女性中最常见的恶性肿瘤之一,其早期诊断对提高患者生存率至关重要。Breast Cancer Wisconsin Diagnostic Dataset由美国威斯康星大学麦迪逊分校的研究团队创建,旨在通过细针穿刺(FNA)图像的数字化分析,提供一种有效的乳腺癌诊断工具。该数据集的核心研究问题是通过计算细胞核的特征,如半径、纹理、周长等,来区分恶性与良性肿瘤。该数据集的构建基于Multisurface Method-Tree(MSM-T)分类方法,并结合线性规划技术,以实现对两类线性不可分集合的鲁棒区分。该数据集的发布对机器学习在医学图像分析领域的应用具有重要推动作用,为乳腺癌的自动化诊断提供了宝贵的数据资源。
当前挑战
Breast Cancer Wisconsin Diagnostic Dataset在构建过程中面临多项挑战。首先,数据集的特征提取依赖于细针穿刺图像的数字化处理,这一过程需要高精度的图像分析技术,以确保特征的准确性和可靠性。其次,数据集的分类任务涉及复杂的线性规划问题,如何在有限的特征空间内选择最优的分离平面,是该数据集面临的主要技术挑战。此外,数据集的样本量相对有限,如何在少量样本中实现高精度的分类,也是该数据集在实际应用中需要克服的难题。最后,数据集的特征选择和分类模型的构建需要结合医学领域的专业知识,以确保模型的临床适用性和诊断准确性。
常用场景
经典使用场景
乳腺癌威斯康星诊断数据集(Breast Cancer Wisconsin Diagnostic Dataset)在医学图像分析领域具有广泛的应用。该数据集通过数字化乳腺细针穿刺(FNA)图像,提取了细胞核的多种特征,如半径、纹理、周长等。这些特征为机器学习模型提供了丰富的输入信息,使得模型能够有效地进行乳腺癌的良恶性分类。经典的使用场景包括构建分类模型,通过训练数据集来预测乳腺肿瘤的恶性或良性状态,从而辅助医生进行诊断决策。
解决学术问题
该数据集解决了医学图像分析中的一个关键问题,即如何通过计算机辅助诊断(CAD)系统提高乳腺癌的早期检测和诊断准确性。通过提供详细的细胞核特征,该数据集为研究者提供了一个标准化的基准,用于评估和比较不同分类算法的性能。这不仅推动了机器学习在医学领域的应用,还为开发更精确、更可靠的诊断工具提供了理论和实践基础。
衍生相关工作
基于乳腺癌威斯康星诊断数据集,研究者们开发了多种先进的分类算法和特征选择方法。例如,一些研究工作探索了如何通过深度学习技术从原始图像中自动提取特征,以提高分类的准确性。此外,该数据集还激发了关于特征选择和模型解释性的研究,旨在提高模型的透明度和可解释性,从而增强其在临床实践中的接受度。这些衍生工作不仅丰富了机器学习理论,还为医学影像分析领域带来了新的技术突破。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录