five

Experimental dataset on water levels in the investigation of silted-up dam break flood wave for dry- and wet-bed downstream conditions while 50 to 80% of the dam reservoir is filled-up with sediment|水利工程数据集|水文研究数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
水利工程
水文研究
下载链接:
https://data.mendeley.com/datasets/zm7rr9ngn5
下载链接
链接失效反馈
资源简介:
Experimental data collection In this file, all water level data associated with 20 different silted-up dam break scenarios were extracted from high-quality experimental video images. The dataset are collected, classified and presented a total of 20 distinct tables in 5 categories based on initial upstream sediment depth; 15 cm, 17.5 cm, 20 cm, 22 cm and 24 cm. Tables 1-4, present the free surface water level data at 20 different locations along the flume and 15 snap times after the dam break, while the initial upstream sediment depth is 15 cm (50% of the reservoir height). Dry- and wet-bed initial downstream condition with 2 cm, 4 cm and 5 cm standing water depth are detailed in Table 1-4, respectively. Table 5-8 provide the free surface water level data at all abovementioned sections and snap times while the initial upstream sediment depth is 17.5 cm (58% of the reservoir height), and dry- or wet-bed downstream with 2 cm, 4 cm and 5 cm standing water depth were considered as initial downstream conditions, respectively. Table 9-12 show the free surface water level data at all sections and snap times while the initial upstream sediment depth is 20 cm (67% of the reservoir height), and dry- or wet-bed downstream with 2 cm, 4 cm and 5 cm standing water depth were considered as initial downstream conditions, respectively. Table 13-16 provide the free surface water level data at all sections and snap times while the initial upstream sediment depth is 22 cm (73% of the reservoir height), and dry- or wet-bed downstream with 2 cm, 4 cm and 5 cm standing water depth were considered as initial downstream conditions, respectively. Table 17-20 show the free surface water level data at all sections and snap times while the initial upstream sediment depth is 24 cm (80% of the reservoir height), and dry- or wet-bed downstream with 2 cm, 4 cm and 5 cm standing water depth were considered as initial downstream conditions, respectively. Foad Vosoughi, Mohammad Reza Nikoo, Gholamreza Rakhshandehroo, Amir H. Gandomi First author Foad Vosoughi Research Associate, Civil Eng. Department, Shiraz University, Shiraz, Iran. Email address: foad.vosooghi@gmail.com ORCID: 0000-0002-4321-9788 Second author Mohammad Reza Nikoo Associate Professor, Civil Eng. Department, Shiraz University, Shiraz, Iran. Third author Gholamreza Rakhshandehroo Professor, Civil Eng. Department, Shiraz University, Shiraz, Iran. Fourth author Amir H. Gandomi Professor, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

World Flights

该数据集包含使用OpenSky Network实时API收集的两小时飞行数据。飞行颜色基于出发国家,记录了18000次飞行,由于缺乏卫星覆盖,海洋上的航线不完整。每条航线还加入了来自airlinecodes.co.uk的航空公司信息。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录