five

GMAI-MMBench|医疗AI数据集|多模态评估数据集

收藏
魔搭社区2025-11-01 更新2025-01-04 收录
医疗AI
多模态评估
下载链接:
https://modelscope.cn/datasets/OpenGVLab/GMAI-MMBench
下载链接
链接失效反馈
资源简介:
# <div align="center"><b> GMAI-MMBench </b></div> [🍎 **Homepage**](https://uni-medical.github.io/GMAI-MMBench.github.io/#2023xtuner) | [**🤗 Dataset**](https://huggingface.co/datasets/myuniverse/GMAI-MMBench) | [**🤗 Paper**](https://huggingface.co/papers/2408.03361) | [**📖 arXiv**]() | [**🐙 GitHub**](https://github.com/uni-medical/GMAI-MMBench) | [**🌐 OpenDataLab**](https://opendatalab.com/GMAI/MMBench) This repository is the official implementation of the paper **GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI**. ## 🌈 Update - **🚀[2024-09-26]: Accepted by NeurIPS 2024 Datasets and Benchmarks Track!🌟** ## 🚗 Tutorial This project is built upon **VLMEvalKit**. To get started: 1. Visit the [VLMEvalKit Quickstart Guide](https://github.com/open-compass/VLMEvalKit/blob/main/docs/en/get_started/Quickstart.md) for installation instructions. You can following command for installation: ```bash git clone https://github.com/open-compass/VLMEvalKit.git cd VLMEvalKit pip install -e . ``` 2. **VAL data evaluation**: You can run the evaluation using either `python` or `torchrun`. Here are some examples: ```bash # When running with `python`, only one VLM instance is instantiated, and it might use multiple GPUs (depending on its default behavior). # That is recommended for evaluating very large VLMs (like IDEFICS-80B-Instruct). # IDEFICS-80B-Instruct on GMAI-MMBench_VAL, Inference and Evalution python run.py --data GMAI-MMBench_VAL --model idefics_80b_instruct --verbose # IDEFICS-80B-Instruct on GMAI-MMBench_VAL, Inference only python run.py --data GMAI-MMBench_VAL --model idefics_80b_instruct --verbose --mode infer # When running with `torchrun`, one VLM instance is instantiated on each GPU. It can speed up the inference. # However, that is only suitable for VLMs that consume small amounts of GPU memory. # IDEFICS-9B-Instruct, Qwen-VL-Chat, mPLUG-Owl2 on GMAI-MMBench_VAL. On a node with 8 GPU. Inference and Evaluation. torchrun --nproc-per-node=8 run.py --data GMAI-MMBench_VAL --model idefics_80b_instruct qwen_chat mPLUG-Owl2 --verbose # Qwen-VL-Chat on GMAI-MMBench_VAL. On a node with 2 GPU. Inference and Evaluation. torchrun --nproc-per-node=2 run.py --data GMAI-MMBench_VAL --model qwen_chat --verbose ``` The evaluation results will be printed as logs, besides. **Result Files** will also be generated in the directory `$YOUR_WORKING_DIRECTORY/{model_name}`. Files ending with `.csv` contain the evaluated metrics. **TEST data evaluation** ```bash # When running with `python`, only one VLM instance is instantiated, and it might use multiple GPUs (depending on its default behavior). # That is recommended for evaluating very large VLMs (like IDEFICS-80B-Instruct). # IDEFICS-80B-Instruct on GMAI-MMBench_VAL, Inference and Evalution python run.py --data GMAI-MMBench_TEST --model idefics_80b_instruct --verbose # IDEFICS-80B-Instruct on GMAI-MMBench_VAL, Inference only python run.py --data GMAI-MMBench_TEST --model idefics_80b_instruct --verbose --mode infer # When running with `torchrun`, one VLM instance is instantiated on each GPU. It can speed up the inference. # However, that is only suitable for VLMs that consume small amounts of GPU memory. # IDEFICS-9B-Instruct, Qwen-VL-Chat, mPLUG-Owl2 on GMAI-MMBench_VAL. On a node with 8 GPU. Inference and Evaluation. torchrun --nproc-per-node=8 run.py --data GMAI-MMBench_TEST --model idefics_80b_instruct qwen_chat mPLUG-Owl2 --verbose # Qwen-VL-Chat on GMAI-MMBench_VAL. On a node with 2 GPU. Inference and Evaluation. torchrun --nproc-per-node=2 run.py --data GMAI-MMBench_TEST --model qwen_chat --verbose ``` Due to the test data not having the answer available, an error will occur after running. This error indicates that VLMEvalKit cannot retrieve the answer during the final result matching stage. ![image1](image1.png) You can access the generated intermediate results from VLMEvalKit/outputs/\<MODEL\>. This is the content of the intermediate result Excel file, where the model's predictions are listed under "prediction." ![image2](image2.png) You will then need to send this Excel file via email to guoanwang971@gmail.com. The email must include the following information: \<Model Name\>, \<Team Name\>, and \<arxiv paper link\>. We will calculate the accuracy of your model using the answer key and periodically update the leaderboard. 3. You can find more details on https://github.com/open-compass/VLMEvalKit/blob/main/vlmeval/dataset/image_mcq.py. ## To render an image into visualization. To facilitate users in testing benchmarks with VLMEvalKit, we have stored our data directly in TSV format, requiring no additional operations to use our benchmark seamlessly with this tool. To prevent data leakage, we have included an "answer" column in the VAL data, while removing the "answer" column from the Test data. For the "image" column, we have used Base64 encoding (to comply with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)'s requirements). The encryption code is as follows: ```python image = cv2.imread(image_path, cv2.IMREAD_COLOR) encoded_image = encode_image_to_base64(image) def encode_image_to_base64(image): """Convert image to base64 string.""" _, buffer = cv2.imencode('.png', image) return base64.b64encode(buffer).decode() ``` The code for converting the Base64 format back into an image can be referenced from the official [VLMEvalKit](https://github.com/open-compass/VLMEvalKit): ```python def decode_base64_to_image(base64_string, target_size=-1): image_data = base64.b64decode(base64_string) image = Image.open(io.BytesIO(image_data)) if image.mode in ('RGBA', 'P'): image = image.convert('RGB') if target_size > 0: image.thumbnail((target_size, target_size)) return image ``` If needed, below is the official code provided by [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) for converting an image to Base64 encoding: ```python def encode_image_to_base64(img, target_size=-1): # if target_size == -1, will not do resizing # else, will set the max_size ot (target_size, target_size) if img.mode in ('RGBA', 'P'): img = img.convert('RGB') if target_size > 0: img.thumbnail((target_size, target_size)) img_buffer = io.BytesIO() img.save(img_buffer, format='JPEG') image_data = img_buffer.getvalue() ret = base64.b64encode(image_data).decode('utf-8') return ret def encode_image_file_to_base64(image_path, target_size=-1): image = Image.open(image_path) return encode_image_to_base64(image, target_size=target_size) ``` ## Benchmark Details We introduce GMAI-MMBench: the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date. It is constructed from **284 datasets** across **38 medical image modalities**, **18 clinical-related tasks**, **18 departments**, and **4 perceptual granularities** in a Visual Question Answering (VQA) format. Additionally, we implemented a **lexical tree** structure that allows users to customize evaluation tasks, accommodating various assessment needs and substantially supporting medical AI research and applications. We evaluated 50 LVLMs, and the results show that even the advanced GPT-4o only achieves an accuracy of 52\%, indicating significant room for improvement. We believe GMAI-MMBench will stimulate the community to build the next generation of LVLMs toward GMAI. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64324ceff76c34519e97c645/ZzryetCcAb43x88xqtOUO.png) ## Benchmark Creation GMAI-MMBench is constructed from 284 datasets across 38 medical image modalities. These datasets are derived from the public (268) and several hospitals (16) that have agreed to share their ethically approved data. The data collection can be divided into three main steps: 1) We search hundreds of datasets from both the public and hospitals, then keep 284 datasets with highly qualified labels after dataset filtering, uniforming image format, and standardizing label expression. 2) We categorize all labels into 18 clinical VQA tasks and 18 clinical departments, then export a lexical tree for easily customized evaluation. 3) We generate QA pairs for each label from its corresponding question and option pool. Each question must include information about image modality, task cue, and corresponding annotation granularity. The final benchmark is obtained through additional validation and manual selection. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64324ceff76c34519e97c645/PndRciL1221KdTHkXmGsK.png) ## Lexical Tree In this work, to make the GMAI-MMBench more intuitive and user-friendly, we have systematized our labels and structured the entire dataset into a lexical tree. Users can freely select the test contents based on this lexical tree. We believe that this customizable benchmark will effectively guide the improvement of models in specific areas. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64324ceff76c34519e97c645/TxpmG_zY0JiALptSw42Pf.png) You can see the complete lexical tree at [**🍎 Homepage**](https://uni-medical.github.io/GMAI-MMBench.github.io/#2023xtuner). ## Evaluation An example of how to use the Lexical Tree for customizing evaluations. The process involves selecting the department (ophthalmology), choosing the modality (fundus photography), filtering questions using relevant keywords, and evaluating different models based on their accuracy in answering the filtered questions. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64324ceff76c34519e97c645/o7ga5ZBIiTs0owhQP4Hoi.jpeg) ## 🏆 Leaderboard | Rank | Model Name | Val | Test | |:----:|:-------------------------:|:-----:|:-----:| | | Random | 25.70 | 25.94 | | 1 | GPT-4o | 53.53 | 53.96 | | 2 | Gemini 1.5 | 47.42 | 48.36 | | 3 | Gemini 1.0 | 44.38 | 44.93 | | 4 | GPT-4V | 42.50 | 44.08 | | 5 | MedDr | 41.95 | 43.69 | | 6 | MiniCPM-V2 | 41.79 | 42.54 | | 7 | DeepSeek-VL-7B | 41.73 | 43.43 | | 8 | Qwen-VL-Max | 41.34 | 42.16 | | 9 | LLAVA-InternLM2-7b | 40.07 | 40.45 | | 10 | InternVL-Chat-V1.5 | 38.86 | 39.73 | | 11 | TransCore-M | 38.86 | 38.70 | | 12 | XComposer2 | 38.68 | 39.20 | | 13 | LLAVA-V1.5-7B | 38.23 | 37.96 | | 14 | OmniLMM-12B | 37.89 | 39.30 | | 15 | Emu2-Chat | 36.50 | 37.59 | | 16 | mPLUG-Owl2 | 35.62 | 36.21 | | 17 | CogVLM-Chat | 35.23 | 36.08 | | 18 | Qwen-VL-Chat | 35.07 | 36.96 | | 19 | Yi-VL-6B | 34.82 | 34.31 | | 20 | Claude3-Opus | 32.37 | 32.44 | | 21 | MMAlaya | 32.19 | 32.30 | | 22 | Mini-Gemini-7B | 32.17 | 31.09 | | 23 | InstructBLIP-7B | 31.80 | 30.95 | | 24 | Idelecs-9B-Instruct | 29.74 | 31.13 | | 25 | VisualGLM-6B | 29.58 | 30.45 | | 26 | RadFM | 22.95 | 22.93 | | 27 | Qilin-Med-VL-Chat | 22.34 | 22.06 | | 28 | LLaVA-Med | 20.54 | 19.60 | | 29 | Med-Flamingo | 12.74 | 11.64 | ## Disclaimers The guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution. Should you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to contact us. Upon verification, such samples will be promptly removed. ## Contact - Jin Ye: jin.ye@monash.edu - Junjun He: hejunjun@pjlab.org.cn - Qiao Yu: qiaoyu@pjlab.org.cn ## Citation **BibTeX:** ```bibtex @misc{chen2024gmaimmbenchcomprehensivemultimodalevaluation, title={GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI}, author={Pengcheng Chen and Jin Ye and Guoan Wang and Yanjun Li and Zhongying Deng and Wei Li and Tianbin Li and Haodong Duan and Ziyan Huang and Yanzhou Su and Benyou Wang and Shaoting Zhang and Bin Fu and Jianfei Cai and Bohan Zhuang and Eric J Seibel and Junjun He and Yu Qiao}, year={2024}, eprint={2408.03361}, archivePrefix={arXiv}, primaryClass={eess.IV}, url={https://arxiv.org/abs/2408.03361}, } ```
提供机构:
maas
创建时间:
2024-12-27
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

波士顿房价数据集

波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。

阿里云天池 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

Paper III (Walker et al. 2024)

Data products used in 3-D CMZ Paper III, Walker et al. (2024). The full cloud catalogue is provided in tabular format, along with a full CMZ map showing the clouds and their assigned IDs. For each cloud ID in the published catalogue there are: - Individual cube cutouts from the MOPRA 3mm CMZ survey (HC3N, HCN, and HNCO). - Individual cube cutouts from the APEX 1mm CMZ survey (13CO, C18O, and H2CO). - Cloud-averaged spectra of the ATCA H2CO 4.83 GHz line. - PV slices of the ATCA H2CO 4.83 GHz line, taken across the major axis of the source. - Where applicable, there are mask files which correspond to the different velocity components of the cloud. In these cases, there are two mask files per velocity component, corresponding to the different masking approaches described in the paper.

DataCite Commons 收录

boat

本项目所使用的数据集名为“boat”,旨在为改进YOLOv11的船舶类型检测系统提供丰富的训练素材。该数据集包含六个主要类别,分别为:散货船、集装箱船、渔船、一般货船、矿石运输船和客船。这些类别涵盖了船舶运输行业的多样性,确保了模型在不同类型船舶识别上的全面性和准确性。数据集中的图像经过精心挑选和标注,确保每个类别的样本都具有代表性。通过使用“boat”数据集,改进后的YOLOv11模型将能够更准确地识别和分类不同类型的船舶,从而提高船舶监测和管理的效率。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录