five

Annual Agricultural Survey 2020 - Uganda|农业调查数据集|乌干达农业数据集

收藏
microdata.worldbank.org2025-03-22 收录
农业调查
乌干达农业
下载链接:
https://microdata.worldbank.org/index.php/catalog/6389
下载链接
链接失效反馈
资源简介:
Abstract --------------------------- The Annual Agricultural Survey (AAS) is an integrated modular survey aiming to provide high quality and timely data on the performance of the Ugandan agricultural sector, as well as core indicators on crop and livestock for better agricultural policy making. Data collection for the AAS is implemented in two waves, corresponding to the first (January-June) and second (July-December) seasons of the Ugandan agricultural year. For each visit, households in the survey's sample are interviewed twice, during the visit1 period and visit2. This results in a total of two visits during the agricultural year. The data collection activities were delayed by the pandemic. Among information collected with the AAS there is data on: The quantity and value of agricultural production; The access to extension services, market information and agricultural facility; Livestock keeping and animal products production; The socio-demographic characteristics of agricultural household members. The collected data is used to produce a set of tables and indicators for tracking and evaluating the impacts of government and development programs on agriculture, and to compute SDG and CAADP indicators related to food and agriculture. For the main findings from the AAS 2020, see the Executive Summary of the AAS 2020 Report (see external resources/downloads section). Geographic coverage --------------------------- The AAS is a national survey representative at the regional, sub-regional and zardi level. The National territory has been divided in 10 ZARDIs which are aligned to 10 Agro-ecological zones in Uganda. Each agro-ecological zone includes districts with similar climate, land use and cropping patterns. The following are the 10 Zardis considered for the AAS: Abi: districts included are Arua, Nebbi, Moyo, Adjumani, Koboko, Yumbe, Maracha-Terego and Zombo; Buginyanya: districts included are Sironko, Mbale, Iganga, Jinja, Tororo, Mayuge, Namutumba, Namayingo, Luuka,Kamuli, Kaliro, Buyende, Bugiri, Pallisa, Kibuku, Butaleja, Busia, Budaka, Manafwa, Kween, Kapchorwa, Bulambuli, Bukwo and Bududa; Bulindi: districts included are Hoima, Masindi, Kiryandongo, Kibaale, and Buliisa; Kachwekano: districts included are Kabale, Rukungiri, Kanungu and Kisoro; Mukono: districts included are Mukono, Mpigi, Kayunga, Kalangala, Kampala, Luwero, Masaka, Nakasongola, Mubende, Wakiso, Nakaseke, Buikwe, Buvuma, Mityana, Kiboga, Kyankwanzi, Gombe, Kalungu, Bukomansimbi, Butambala and Lwengo; Ngetta: districts included are Lira, Apac, Dokolo, Lamwo, Nwoya, Agago, Albetong, Amolatar, Kole, Otuke, Oyam, Pader,Kitgum, Amuru and Gulu; Analysis unit --------------------------- Agricultural households (i.e. agricultural holdings in the household sector) Universe --------------------------- Agricultural households (i.e. agricultural holdings in the household sector). Kind of data --------------------------- Sample survey data [ssd] Sampling procedure --------------------------- A two-stage sampling design was adopted for the AAS 2020. To increase the efficiency of the sample design, the sampling frame was stratified into 10 ZARDIs. In each stratum, the first stage was the selection of the Primary Sampling Unit (PSU), which is the EA (enumerator area) and the second stage was the selection of the Secondary Sampling Unit (SSU), which are the Ag HHs. The survey covered households cultivating crops and/or raising livestock, including households that were cultivating a few crops or raising a limited number of animals. No minimum threshold on the amount of land cultivated or animals raised was set nor did the survey aim to generate estimates concerning aquaculture, forestry and fisheries. Sample size The survey generated national, regional and sub-regional level estimates. A sample of 593 EAs and an average of 12 Ag HHs were selected from each EA. Mode of data collection --------------------------- Computer Assisted Personal Interview [capi] Research instrument --------------------------- The Annual Agricultural Survey (AAS 2020) adopted three main questionnaires: the post-planting (PP), the post-harvest (PH) and the livestock and holding questionnaires. Normally, the PP and PH questionnaires are administered each season, while the livestock and holding questionnaire is administered at the end of the second season and covers the entire agricultural year. Nonetheless, in the AAS 2020, a different survey calendar was adopted due to movement limitations imposed as a result of the COVID-19 pandemic. Cleaning operations --------------------------- All the data captured from the field were stored in the cloud with a local backup. Editing and validation was done electronically using STATA software. Response rate --------------------------- The response rate was about the 94.5 %. Sampling error estimates --------------------------- The accuracy of the survey results depends on the sampling and the non-sampling errors. The AAS 2020 had a large enough and representative sample to limit sampling errors. On the other hand, the non-sampling errors, usually errors that arise during data collection, were controlled through thorough training of the data collectors, field supervision by the headquarters team, and a well-developed CAPI programme. The Coefficients of Variations (CVs) and Confidence Intervals (CIs) for selected indicators at national, ZARDI and sub-regional levels are presented in the Annex tables.

摘要 --------------------------- 《乌干达年度农业调查》(AAS)是一项综合模块化调查,旨在提供关于乌干达农业部门绩效的高质量、及时数据,以及关于作物和畜牧业的内核指标,以助力更佳的农业政策制定。AAS的数据收集分为两个阶段,分别对应乌干达农业年度的第一季(1月至6月)和第二季(7月至12月)。对于每一次访问,调查样本中的家庭将在访问1期间和访问2期间接受两次访谈。这导致在农业年度内总共进行两次访问。由于疫情的影响,数据收集活动被延迟。AAS收集的信息包括:农业生产数量和价值;获取扩展服务、市场信息和农业设施的情况;畜牧业和动物产品生产;农业家庭成员的社会人口统计特征。收集到的数据用于编制一系列表格和指标,以追踪和评估政府和发展项目对农业的影响,并计算与食品和农业相关的可持续发展目标(SDG)和非洲农业发展计划(CAADP)指标。关于AAS 2020的主要发现,请参阅AAS 2020报告的执行摘要(见外部资源/下载部分)。 地理覆盖范围 --------------------------- AAS是一项在区域、次区域和地方级的国家级调查。国家领土已被划分为10个ZARDIs,与乌干达的10个农业生态区相对应。每个农业生态区包括具有相似气候、土地利用和作物模式的地区。以下是AAS考虑的10个Zardis:Abi:包括Arua、Nebbi、Moyo、Adjumani、Koboko、Yumbe、Maracha-Terego和Zombo;Buginyanya:包括Sironko、Mbale、Iganga、Jinja、Tororo、Mayuge、Namutumba、Namayingo、Luuka、Kamuli、Kaliro、Buyende、Bugiri、Pallisa、Kibuku、Butaleja、Busia、Budaka、Manafwa、Kween、Kapchorwa、Bulambuli、Bukwo和Bududa;Bulindi:包括Hoima、Masindi、Kiryandongo、Kibaale和Buliisa;Kachwekano:包括Kabale、Rukungiri、Kanungu和Kisoro;Mukono:包括Mukono、Mpigi、Kayunga、Kalangala、Kampala、Luwero、Masaka、Nakasongola、Mubende、Wakiso、Nakaseke、Buikwe、Buvuma、Mityana、Kiboga、Kyankwanzi、Gombe、Kalungu、Bukomansimbi、Butambala和Lwengo;Ngetta:包括Lira、Apac、Dokolo、Lamwo、Nwoya、Agago、Albetong、Amolatar、Kole、Otuke、Oyam、Pader、Kitgum、Amuru和Gulu。 分析单元 --------------------------- 农业家庭(即在家庭部门中的农业经营单位) 总体 --------------------------- 农业家庭(即在家庭部门中的农业经营单位)。 数据类型 --------------------------- 样本调查数据 [ssd] 抽样程序 --------------------------- AAS 2020采用了两阶段抽样设计。为了提高样本设计的效率,抽样框架被分层为10个ZARDIs。在每个层中,第一阶段是选择主要抽样单位(PSU),即EA(调查员区域),第二阶段是选择次级抽样单位(SSU),即农业家庭。调查涵盖了种植作物和/或饲养家畜的家庭,包括种植少量作物或饲养有限数量动物的家庭。未设定关于耕种土地数量或饲养动物数量的最低阈值,调查也不旨在生成有关水产养殖、林业和渔业的估计。样本量:调查生成了全国、区域和次区域级别的估计。从每个EA中选择了593个EA和平均12个农业家庭。 数据收集方式 --------------------------- 计算机辅助个人访谈 [capi] 研究工具 --------------------------- 《年度农业调查》(AAS 2020)采用了三种主要问卷:播种后(PP)、收获后(PH)和畜牧业及经营情况问卷。通常,PP和PH问卷在每个季节进行管理,而畜牧业及经营情况问卷则在第二个季节结束时进行管理,覆盖整个农业年度。然而,在AAS 2020中,由于COVID-19大流行导致的行动限制,采用了不同的调查日历。 数据清理操作 --------------------------- 所有从现场捕获的数据都存储在云端,并进行了本地备份。编辑和验证是通过STATA软件进行的。 响应率 --------------------------- 响应率约为94.5%。 抽样误差估计 --------------------------- 调查结果的准确性取决于抽样和非抽样误差。AAS 2020拥有足够大且具有代表性的样本,以限制抽样误差。另一方面,非抽样误差,通常是在数据收集过程中产生的错误,通过数据收集者的彻底培训、总部团队的现场监督和完善的CAPI程序得到了控制。国家、ZARDI和次区域级别选定指标的变化系数(CVs)和置信区间(CIs)在附录表中呈现。
提供机构:
microdata.worldbank.org
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

Data_on_Data_Analysts

我们正在探索数据分析师职位的就业市场趋势:需求技能、薪资变化和招聘模式。该数据集汇编了美国数据分析师职位的招聘信息,直接来源于Google的职位搜索结果。数据收集始于2022年11月4日,并持续增长,每天新增约100个职位信息,提供了当前就业市场的持续更新快照。

github 收录

WeChat Social Network Dataset

该数据集包含了微信社交网络的用户关系数据,包括用户之间的关注关系、互动行为等。数据集旨在帮助研究社交网络的结构和动态变化。

www.aminer.cn 收录

中国行政区划数据

本项目为中国行政区划数据,包括省级、地级、县级、乡级和村级五级行政区划数据。数据来源于国家统计局,存储格式为sqlite3 db文件,支持直接使用数据库连接工具打开。

github 收录

Kaggle Stock Market Data

该数据集包含多个股票市场的历史数据,涵盖了股票的开盘价、收盘价、最高价、最低价、成交量等信息。数据集还包括了股票的代码、日期和市场名称等基本信息。

www.kaggle.com 收录