five

Supporting data for "LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly"

收藏
DataCite Commons2020-09-20 更新2025-04-15 收录
下载链接:
http://gigadb.org/dataset/100540
下载链接
链接失效反馈
资源简介:
Completing a genome is an important goal of genome assembly. However, many assemblies, including reference assemblies, are unfinished and have a number of gaps. Long reads obtained from third-generation sequencing (TGS) platforms can help close these gaps and improve assembly contiguity. However, current gap-closure approaches using long reads require extensive runtime and high memory usage. Thus, a fast and memory-efficient approach using long reads is needed to obtain complete genomes. <br>We developed LR_Gapcloser to rapidly and efficiently close the gaps in genome assembly. This tool utilizes long reads generated from TGS sequencing platforms. Tested on de novo assembled-gaps, repeat-derived gaps, and real gaps, LR_Gapcloser closed a higher number of gaps faster, with a lower error rate and a much lower memory usage than two existing, state-of-the art tools. This tool utilized raw reads to fill more gaps than when using error-corrected reads. It is applicable to gaps in the assemblies by different approaches and from large and complex genomes. After performing gap-closure using this tool, the contig N50 size of the human CHM1 genome was improved from 143 kb to 19 Mb, a 132-fold increase. We also closed the gaps in the Triticum urartu genome, a large genome rich in repeats, and the contig N50 size was increased by 40%. Further, we evaluated the contiguity and correctness of six hybrid assembly strategies by combining the optimal TGS-based and NGS-based assemblers with LR_Gapcloser. A proposed and optimal hybrid strategy generated a new human CHM1 genome assembly with marked contiguity. The contig N50 value was over 28 Mb, which is larger than previous non-reference assemblies of the diploid human genome. <br>The software is available at http://www.fishbrowser.org/software/LR_Gapcloser/.
提供机构:
GigaScience Database
创建时间:
2018-11-27
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

CIFAR-10

CIFAR-10 数据集由 10 个类别的 60000 个 32x32 彩色图像组成,每个类别包含 6000 个图像。有 50000 个训练图像和 10000 个测试图像。 数据集分为五个训练批次和一个测试批次,每个批次有 10000 张图像。测试批次恰好包含来自每个类别的 1000 个随机选择的图像。训练批次包含随机顺序的剩余图像,但一些训练批次可能包含来自一个类的图像多于另一个。在它们之间,训练批次恰好包含来自每个类别的 5000 张图像。

OpenDataLab 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录