five

CUB-200-2011, Stanford Dogs, Stanford Cars, FGVC Aircraft, NABirds, Tiny ImageNet, iNaturalist2017|细粒度视觉分类数据集|计算机视觉数据集

收藏
github2024-05-15 更新2024-05-31 收录
细粒度视觉分类
计算机视觉
下载链接:
https://github.com/lvyilin/pytorch-fgvc-dataset
下载链接
链接失效反馈
资源简介:
这是一个包含多个数据集的仓库,主要用于细粒度视觉分类任务,支持自动下载(除大规模数据集外)、解压存档和准备数据。

This is a repository containing multiple datasets, primarily designed for fine-grained visual classification tasks. It supports automatic downloading (except for large-scale datasets), decompressing archives, and preparing data.
创建时间:
2020-04-09
原始信息汇总

PyTorch FGVC Dataset 概述

数据集支持

  • 已支持的数据集

    • CUB-200-2011
    • Stanford Dogs
    • Stanford Cars
    • FGVC Aircraft
    • NABirds
    • Tiny ImageNet
    • iNaturalist 2017
  • 待支持的数据集

    • Oxford 102 Flowers
    • Oxford-IIIT Pets
    • Food-101

使用环境

  • 测试环境:
    • pytorch==1.4.0
    • torchvision==0.4.1

使用方法

  • 使用方式类似于 torchvision.datasets

python train_dataset = Cub2011(./cub2011, train=True, download=False) test_dataset = Cub2011(./cub2011, train=False, download=False)

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集的构建方式主要基于对多个细粒度视觉分类(Fine-Grained Visual Categorization, FGVC)任务的整合。这些数据集,包括CUB-200-2011、Stanford Dogs、Stanford Cars、FGVC Aircraft、NABirds、Tiny ImageNet和iNaturalist 2017,均通过自动化的方式进行下载、解压和数据准备。此过程确保了数据集的完整性和可用性,同时避免了手动操作的繁琐。
特点
这些数据集的主要特点在于其专注于细粒度视觉分类任务,涵盖了多种高分辨率图像,如鸟类、狗、汽车、飞机等。每个数据集都包含了详细的标注信息,便于进行精确的分类和识别任务。此外,这些数据集的多样性和复杂性为研究者提供了丰富的实验材料,有助于推动细粒度分类技术的发展。
使用方法
使用这些数据集时,用户可以采用类似于`torchvision.datasets`的方式进行操作。例如,通过指定数据集的路径、训练或测试模式以及是否需要下载,用户可以轻松地加载和使用这些数据集。代码示例展示了如何加载CUB-200-2011数据集的训练和测试部分,确保了使用的便捷性和灵活性。
背景与挑战
背景概述
在细粒度视觉分类(Fine-Grained Visual Categorization, FGVC)领域,CUB-200-2011、Stanford Dogs、Stanford Cars、FGVC Aircraft、NABirds、Tiny ImageNet 和 iNaturalist 2017 等数据集的创建与发布,极大地推动了该领域的研究进展。这些数据集由多个知名研究机构和团队共同开发,旨在解决细粒度图像分类中的核心问题,即在相似类别中区分细微差异。例如,CUB-200-2011 数据集包含了200种鸟类的图像,每种鸟类具有详细的标注信息,帮助研究者探索更精细的分类方法。这些数据集的发布不仅为学术界提供了丰富的研究资源,也为工业界提供了重要的基准测试平台,推动了计算机视觉技术的广泛应用。
当前挑战
尽管这些数据集在细粒度视觉分类领域取得了显著进展,但仍面临诸多挑战。首先,细粒度分类任务要求模型能够捕捉到图像中极其细微的特征差异,这对模型的特征提取能力提出了极高的要求。其次,数据集的构建过程中,标注的准确性和一致性是关键问题,尤其是在处理复杂场景和多样化的对象时,标注的难度显著增加。此外,大规模数据集如 iNaturalist 2017 的存储和处理也对计算资源提出了更高的要求。最后,如何在有限的训练数据下实现高效的模型训练,仍是当前研究中的一个重要挑战。
常用场景
经典使用场景
这些数据集,如CUB-200-2011、Stanford Dogs和Stanford Cars等,主要用于细粒度视觉分类(Fine-Grained Visual Categorization, FGVC)任务。这类任务要求模型能够区分同一类别下的不同子类别,例如识别不同种类的鸟、狗或汽车。通过这些数据集,研究人员可以训练和评估模型在高度相似类别间的分类能力,从而推动计算机视觉技术在细粒度识别领域的进步。
解决学术问题
这些数据集解决了细粒度视觉分类中的关键学术问题,如类间差异小、类内差异大的挑战。通过提供高质量的标注数据,它们帮助研究人员开发和验证新的算法,以提高模型在复杂场景下的识别精度。这些研究不仅推动了计算机视觉领域的发展,还为其他相关领域如生物多样性监测、自动驾驶等提供了理论和技术支持。
衍生相关工作
基于这些数据集,许多经典的研究工作得以开展。例如,CUB-200-2011数据集启发了大量关于鸟类分类的研究,推动了深度学习在细粒度分类中的应用。Stanford Dogs和Stanford Cars数据集则促进了动物和车辆识别技术的发展。此外,iNaturalist2017数据集的大规模应用,为自然图像分类提供了新的研究方向,推动了多标签分类和大规模数据处理技术的进步。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录