five

Data set: Monthly averaged RACMO2.3p2 variables (1979-2022); Antarctica|气候模型数据集|南极研究数据集

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
气候模型
南极研究
下载链接:
https://zenodo.org/records/7845736
下载链接
链接失效反馈
资源简介:
This is a data set of monthly averaged variables from January 1979 to December 2022 simulated by the hydrostatic regional atmospheric climate model RACMO2.3p2 over Antarctica. At the lateral and ocean boundaries the model is forced by ERA5 reanalysis data every 3 hours from 1979-2022. The model is run at a horizontal resolution of 27 km and 40 vertical levels for the entire Antarctic ice sheet, which constitutes an update of the simulation forced from 1979-2018 by ERA-Interim reported in van Wessem et al., 2018. Upper air relaxation of wind, humidity and temperature is also active (Van de Berg et al., 2016). This version of the model is specifically applied to the polar regions by interactive coupling to a multilayer snow model that calculates melt, refreezing, percolation and runoff of meltwater (Ettema et al., 2010). In addition, snow albedo is calculated through a prognostic scheme for snow grain size (Kuipers Munneke et al., 2011) while a drifting snow scheme simulates the interaction of the near-surface air with drifting snow (Lenaerts et al., 2010). This dataset is provided on a rotated polar coordinate grid. In such a rotated pole projection the grid is defined over the equator and then rotated to the area of interest. One of the advantages is that the grid distance can be defined in fraction of degrees, which results in near equidistant grid cells as long as the domain is small enough, and provides the most accurate model calculations. However, re-projecting these data on other grids is often troublesome, as after rotation the grid is non-equidistant and most software packages cannot directly handle this. Stef Lhermitte provided a nice solution for reprojecting the RACMO data on his gitlab-page: https://gitlab.tudelft.nl/slhermitte/manuals/blob/master/RACMO_reproject.md. The dataset includes the following surface- and atmospheric variables. Additional variables and higher temporal resolutuon up to 3 hourly are available on request: Surface mass balance (SMB) variables (in kg m-2 mo-1 or mm water equivalent mo-1) smb : (Specific) Surface mass balance defined as SMB = Total precipitation + sublimation - runoff snowmelt : Surface snowmelt production refreeze : Refreezing of meltwater snowfall : Solid precipitation precip : Total precipitation (snowfall + rainfall); to calculate rainfall use rainfall = precip - snowfall runoff : Surface meltwater runoff subl : Snow sublimation (including sublimation of drifting snow). Negative values are sublimation, positive values are snow deposition. erds : erosion of drifting snow Atmospheric variables t2m : 2-m Temperature q2m : 2-m Specific humidity rh2m : 2-m Relative humidity (RH) tskin : Surface/skin temperature. Calculated from closing the surface energy budget. psurf : Surface pressure u10m : Zonal wind speed at 10 m v10m : Meridional wind speed at 10 m ff10m : Wind speed at 10 m u0500 : Zonal wind speed at 500 hPa v0500 : Meridional wind speed at 500 hPa z0500 : Geopotential height at 500 hPa Surface Energy Budget (SEB) variables (in J m-2); SEB = LWnet+SWnet+SHF+LHF+GHF Values are monthly cumulative: to convert to W m-2 divide by amount of seconds in a month: 'nrdaysmonth'*24*3600. lwsn : Net longwave radiation (LWnet=LWdown-LWup) swsn : Net shortwave radiation (SWnet=SWdown-SWup) lwsd : Downwelling longwave radiation at the surface swsd : Downwelling shortwave radiation at the surface swsu : Upwelling shortwave radiation at the surface senf : Upward Sensible Heat Flux (SHF) at the surface latf : Upward Latent Heat Flux (LHF) at the surface (our simulated LHF doesn't explicitly close the SEB, as it also includes in-air sublimation, but the effect should be rougly neglible) gbot : Soil/Ground Heat Flux (GHF) Snow variables totpore : Vertically integrated pore space (m) totwat : Total liquid water content of the snowpack (kg m-2) zsnow : Total snowpack thickness (m) Grid, elevation, coordinates and masks in Height_latlon_ANT27.nc (240 by 262 grid boxes) mask2d : Full ice mask fraction (grounded ice + floating ice shelves) [0..1] maskgrounded2d : Grounded ice sheet mask fraction [0..1] height : Surface elevation (m) slope : Surface slope (m m-1) aspect : Direction of surface slope (degrees) lat : Latitude (polar) lon : Longitude (polar) Ice shelf and ice sheet drainage basins mask in TotIS_RACMO_ANT27_IMBIE2.nc This file contains masks on the RACMO grid for the drainage basins as defined in http://imbie.org/imbie-3/drainage-basins/ (Rignot et al., 2013, IMBIE2, IMBIE3), including masks seperately for the ice shelves they drain into, numbered counterclockwise from 0 to 18. mask2dF : Full ice mask including ice shelves IceShelves : Ice shelf masks GroundedIce : Grounded ice sheet drainage basins
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

Nexdata/chinese_dialect

该数据集包含25,000小时的中文方言语音数据,收集自多个方言区域的本地方言使用者,涵盖闽南语、粤语、四川话、河南话、东北话、上海话、维吾尔语和藏语等。数据格式为16kHz、16bit、未压缩的wav文件,单声道。句子准确率超过95%。数据集支持的任务包括自动语音识别(ASR)和音频说话人识别。

hugging_face 收录

CliMedBench

CliMedBench是一个大规模的中文医疗大语言模型评估基准,由华东师范大学等机构创建。该数据集包含33,735个问题,涵盖14个核心临床场景,主要来源于顶级三级医院的真实电子健康记录和考试练习。数据集的创建过程包括专家指导的数据选择和多轮质量控制,确保数据的真实性和可靠性。CliMedBench旨在评估和提升医疗大语言模型在临床决策支持、诊断和治疗建议等方面的能力,解决医疗领域中模型性能评估的不足问题。

arXiv 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录