UCI Machine Learning Repository: Glass Identification|玻璃分类数据集|化学成分分析数据集
收藏
- UCI Machine Learning Repository首次发布,其中包括Glass Identification数据集。
- Glass Identification数据集首次应用于玻璃类型分类的研究中,成为机器学习领域的重要基准数据集之一。
- Glass Identification数据集在多个国际机器学习会议和期刊上被广泛引用,进一步巩固了其在学术界的影响力。
- 随着机器学习技术的快速发展,Glass Identification数据集被用于多种新型算法的测试和验证,推动了相关领域的研究进展。
- Glass Identification数据集继续在现代机器学习研究中发挥重要作用,尤其是在深度学习和大数据分析领域。
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
LIDC-IDRI
LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。
OpenDataLab 收录
PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
CityScapes
Cityscapes是一个大型数据库,专注于对城市街道场景的语义理解。它为分为8个类别 (平面,人类,车辆,构造,对象,自然,天空和虚空) 的30个类提供语义,实例和密集的像素注释。数据集由大约5000个精细注释图像和20000个粗糙注释图像组成。在几个月,白天和良好的天气条件下,在50个城市中捕获了数据。它最初被记录为视频,因此手动选择帧以具有以下功能: 大量动态对象,不同的场景布局和不同的背景。
OpenDataLab 收录
