five

UCI Machine Learning Repository: Iris|机器学习数据集|分类数据集

收藏
archive.ics.uci.edu2024-10-30 收录
机器学习
分类
下载链接:
https://archive.ics.uci.edu/ml/datasets/Iris
下载链接
链接失效反馈
资源简介:
Iris数据集是一个经典的多变量分类数据集,包含150个样本,每个样本有4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。数据集的目标是根据这些特征预测鸢尾花的种类,共有三种类别:Setosa、Versicolour和Virginica。
提供机构:
archive.ics.uci.edu
AI搜集汇总
数据集介绍
main_image_url
构建方式
Iris数据集源自UCI机器学习库,其构建基于对三种鸢尾花(Setosa、Versicolour和Virginica)的测量数据。每种鸢尾花各有50个样本,共计150个样本。数据集包括四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度,所有测量单位均为厘米。这些数据由统计学家R.A. Fisher在1936年首次引入,作为多变量分析的示例。
使用方法
Iris数据集广泛应用于机器学习算法的研究和教学中,尤其适用于分类算法的性能评估。用户可以通过加载数据集,进行数据预处理、特征选择和模型训练。常见的使用场景包括支持向量机、决策树、K近邻等分类算法的实现与比较。此外,Iris数据集也可用于探索性数据分析和可视化展示,帮助理解数据的基本结构和分布。
背景与挑战
背景概述
Iris数据集,源自UCI机器学习库,是模式识别领域的经典基准数据集。该数据集由统计学家R.A. Fisher于1936年创建,旨在通过鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)来区分三种不同的鸢尾花品种(Setosa、Versicolour和Virginica)。Iris数据集的引入极大地推动了分类算法的发展,尤其是在早期机器学习研究中,它为研究人员提供了一个标准化的测试平台,促进了多种分类技术的实验与比较。至今,Iris数据集仍被广泛用于教学和研究,成为机器学习入门课程中的经典案例。
当前挑战
尽管Iris数据集在机器学习领域具有重要地位,但其应用也面临若干挑战。首先,数据集规模较小,仅包含150个样本,这在现代大数据背景下显得相对有限,可能影响算法的泛化能力。其次,数据集的特征维度较低,仅四个特征,这在处理复杂问题时可能不足以捕捉数据的全部信息。此外,Iris数据集的类别分布相对均衡,这在实际应用中并不常见,可能导致模型在处理不均衡数据时的表现不佳。最后,Iris数据集的简单性也可能限制其在高级机器学习技术中的应用,如深度学习和迁移学习。
发展历史
创建时间与更新
UCI Machine Learning Repository: Iris数据集创建于1936年,由英国统计学家Ronald Fisher首次引入。该数据集在1988年被纳入UCI Machine Learning Repository,成为该库中最古老且最著名的数据集之一。
重要里程碑
UCI Machine Learning Repository: Iris数据集的标志性影响在于其作为机器学习领域的经典基准数据集,广泛用于算法评估和教学。1988年,该数据集被纳入UCI Machine Learning Repository,标志着其正式进入计算机科学领域,并成为许多机器学习算法和技术的测试标准。此后,Iris数据集在多个研究论文和教材中被引用,持续影响着机器学习的发展。
当前发展情况
当前,UCI Machine Learning Repository: Iris数据集仍然是机器学习和数据科学领域的重要资源。尽管已有超过80年的历史,Iris数据集因其简洁性和代表性,继续被用于新算法的开发和验证。此外,随着数据科学教育的普及,Iris数据集也成为初学者入门的首选案例,帮助他们理解基本的数据分析和机器学习概念。该数据集的持续使用和研究,不仅展示了其在历史上的重要性,也体现了其在现代数据科学中的持久价值。
发展历程
  • 统计学家Ronald Fisher首次发表了Iris数据集,作为其论文《The use of multiple measurements in taxonomic problems》中的一部分,用于展示线性判别分析(LDA)的应用。
    1936年
  • Iris数据集被收录进UCI Machine Learning Repository,成为该仓库中最古老且最常用的数据集之一,广泛应用于机器学习和数据挖掘的教学与研究中。
    1983年
常用场景
经典使用场景
在机器学习领域,UCI Machine Learning Repository: Iris数据集被广泛用于分类任务的基准测试。该数据集包含了150个样本,每个样本有四个特征,分别代表花萼和花瓣的长度和宽度。通过这些特征,研究人员可以训练模型来区分三种不同类型的鸢尾花,即Setosa、Versicolour和Virginica。这一经典场景不仅帮助初学者理解分类算法的基本原理,也为高级研究者提供了验证新算法的平台。
解决学术问题
UCI Machine Learning Repository: Iris数据集解决了机器学习领域中分类算法性能评估的常见问题。通过提供一个结构简单且标签明确的样本集,该数据集使得研究人员能够快速验证和比较不同分类算法的准确性和效率。此外,它还促进了特征选择和降维技术的发展,为后续复杂数据集的研究奠定了基础。这一数据集的意义在于,它不仅是一个教学工具,更是一个推动算法创新的基石。
实际应用
在实际应用中,UCI Machine Learning Repository: Iris数据集的分类模型可以应用于植物学和农业领域,帮助自动识别和分类不同种类的植物。例如,通过分析植物的花萼和花瓣特征,农民可以快速识别病害植物,从而采取相应的防治措施。此外,该数据集的模型还可以用于园艺设计,通过识别不同种类的花卉来优化景观布局。这些应用不仅提高了工作效率,还减少了人为错误的可能性。
数据集最近研究
最新研究方向
在植物学与机器学习交叉领域,UCI Machine Learning Repository中的Iris数据集持续成为研究焦点。最新研究方向集中在利用深度学习技术提升分类模型的准确性与鲁棒性。通过引入卷积神经网络(CNN)和递归神经网络(RNN),研究者们探索了如何更有效地捕捉Iris花的特征,从而在复杂环境中实现更精准的分类。此外,跨学科研究中,Iris数据集被用于验证新型生物特征识别算法,推动了生物信息学与计算机科学的融合。这些前沿研究不仅提升了Iris数据集的应用价值,也为其他生物数据集的分析提供了新的方法论。
相关研究论文
  • 1
    Iris Plants DatabaseUniversity of California, Irvine · 1988年
  • 2
    The Use of Multiple Measurements in Taxonomic ProblemsRoyal Horticultural Society, London · 1936年
  • 3
    A Survey of Outlier Detection MethodologiesUniversity of Pittsburgh · 2009年
  • 4
    A Review of Dimension Reduction TechniquesUniversity of California, San Diego · 1997年
  • 5
    A Comparative Study of Supervised Learning AlgorithmsUniversity of Malaya · 2014年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录