DUD-E|药物发现数据集|虚拟筛选数据集
收藏
- DUD-E数据集的前身DUD(Directory of Useful Decoys)首次发表,旨在提供高质量的虚拟化合物库,用于评估分子对接算法的性能。
- DUD数据集首次应用于分子对接研究,显著提升了对接算法的准确性和可靠性。
- DUD-E(Directory of Useful Decoys, Enhanced)数据集正式发布,相较于DUD,DUD-E包含了更多的虚拟化合物和更广泛的靶标类型,极大地扩展了其应用范围。
- DUD-E数据集被广泛应用于药物发现和分子对接研究,成为评估和优化对接算法的标准数据集之一。
- DUD-E数据集的更新版本发布,进一步优化了虚拟化合物的质量和多样性,提升了其在药物设计中的应用价值。
- 1Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better BenchmarkingUniversity of California, San Francisco · 2012年
- 2Benchmarking Molecular Docking and Virtual Screening with the DUD-E DatasetUniversity of California, San Francisco · 2018年
- 3Machine Learning in Drug Discovery: A Review of the Recent LiteratureUniversity of California, San Francisco · 2020年
- 4Deep Learning for Molecular Design: A Review of the State of the ArtUniversity of California, San Francisco · 2019年
- 5Advances in Computational Drug Discovery: A Review of Recent DevelopmentsUniversity of California, San Francisco · 2021年
Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
Breast Ultrasound Images (BUSI)
小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。
github 收录
Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
VisDrone2019
VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。
github 收录
PREVALENCE OF AND FACTORS ASSOCIATED WITH ALCOHOL AND TOBACCO CONSUMPTION AMONG PHYSICAL EDUCATION UNDERGRADUATES
ABSTRACT We assessed the prevalence of and factors associated with alcohol consumption and smoking among Physical Education undergraduates of the city of Brasília, Brazil. This epidemiological, cross-sectional study was conducted with 903 second-semester students during the academic year of 2016. We used a self-administered questionnaire on health-related life habits. Of the 903 participants, 57.4 % were female and 42.6% were male; mean age was 24.4±5.0 years. Sixty-eight point eight percent of students consumed alcohol, 37.3% of them at least once per month, with no differences between sexes (p=0.435). Ninety-two point seven percent of females and 91.7% of males reported that the habit of consuming alcohol had been acquired before entering university. Twenty-nine point one percent of participants reported being smokers, of which 7.0% only smoked at parties or on weekends. There was a higher prevalence of alcohol consumption (69.8%) and smoking (31.2%) among students who lived with their parents or relatives. Based on our findings, we propose that the dissemination of information on the harmful effects of excessive consumption of alcohol and smoking may contribute to the prevention of health and social damages caused by these habits.
DataCite Commons 收录