SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas|无人机数据集|多传感器集成数据集
收藏SUG-UAV-Multirotor-Dataset-IPIN2024
简介
SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas
该无人机数据集旨在支持无人机研究,如高精度定位和动态校准。数据集分为两类,每部分针对不同的研究需求。第一类数据集包含在室内运动捕捉室收集的视觉、惯性和电机编码器信息。该数据集提供了由运动捕捉生成的准确地面真实数据,适用于研究无人机动力学模型。另一类数据在多种复杂户外场景中收集,使用多传感器融合定位算法生成高精度地面真实轨迹,可用于研究无人机在复杂环境中的定位和场景重建。总共提供了9个序列的数据集。特别地,每个序列中的原始测量时间戳已经过良好同步和精确校准。
无人机设置
<p align="center"> <img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/set1.png" height="300" /><img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/set2.png" height="300" /> </p>
数据收集环境
数据集在以下场景中收集: <p align="center"> <img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/scene.png" width="800" /> <figcaption>左:Polyu的运动捕捉室,中:香港科学园的环形交叉路口,右:PolyU的Hotel Icon的宴会厅</figcaption> </p>
数据集类别预览
类别 | 序列号 | 传感器 | 轨迹形状 | 长度/持续时间 | 地面真实数据 |
---|---|---|---|---|---|
动态序列 | Seq 1 | 相机/IMU/电机编码器 | 圆形 | 30.432米/27.050秒 | 运动捕捉 |
动态序列 | Seq 2 | 相机/IMU/电机编码器 | 垂直椭圆形 | 18.568米/43.351秒 | 运动捕捉 |
动态序列 | Seq 3 | 相机/IMU/电机编码器 | 鞍形 | 60.606米/59.366秒 | 运动捕捉 |
动态序列 | Seq 4 | 相机/IMU/电机编码器 | 无限形 | 57.479米/110.784秒 | 运动捕捉 |
动态序列 | Seq 5 | 相机/IMU/电机编码器 | 方形 | 45.070米/62.000秒 | 运动捕捉 |
动态序列 | Seq 6 | 相机/IMU/电机编码器 | 自由形 | 71.004米/241.960秒 | 运动捕捉 |
LiDAR序列 | Seq 7 | LiDAR/IMU/UWB/GNSS | 圆形 | 139.424米/136.903秒 | LIO |
LiDAR序列 | Seq 8 | LiDAR/IMU/UWB/GNSS | 自由形 | 340.570米/452.999秒 | GLIO |
LiDAR序列 | Seq 9 | LiDATR/IMU | 方形 | 76.317米/341.300秒 | LIO |

PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录
PoLaRIS Dataset
PoLaRIS数据集是由仁荷大学电气与计算机工程系创建的一个用于海上目标检测和跟踪的多模态数据集,基于Pohang Canal数据集。该数据集包含约36万张图像和19万条标注,涵盖了从大到小的多尺度对象标注,特别适用于海上无人船(USV)的安全导航。数据集通过多模态传感器(如RGB、TIR、LiDAR和Radar)获取数据,并提供了详细的障碍物检测和跟踪的地面真实数据。创建过程中采用了半自动标注方法,确保了标注的准确性和效率。该数据集主要应用于复杂海上环境中的自主导航系统,旨在提高海上无人船的障碍物检测和跟踪能力,从而提升海上安全。
arXiv 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录