Learning Improvement Information Center: Regional Indicators for Physical Resources
收藏flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
中国近海台风路径集合数据集(1945-2024)
1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。
国家海洋科学数据中心 收录
CODrone
CODrone 是一个为无人机设计的全面定向目标检测数据集,它准确反映了真实世界条件。该数据集包含来自多个城市在不同光照条件下的广泛标注图像,增强了基准的逼真度。CODrone 包含超过 10,000 张高分辨率图像,捕获自五个城市的真实无人机飞行,涵盖了各种城市和工业环境,包括港口和码头。为了提高鲁棒性和泛化能力,它包括在正常光线、低光和夜间条件下相同场景的图像。我们采用了三种飞行高度和两种常用的相机角度,从而产生了六个不同的视角配置。所有图像都针对 12 个常见对象类别进行了定向边界框标注,总计超过 590,000 个标记实例。总体而言,这项工作构建了一个综合数据集和基准,用于城市无人机场景中的定向目标检测,旨在满足该领域的研究和实践应用需求。
arXiv 收录
全国兴趣点(POI)数据
POI(Point of Interest),即兴趣点,一个POI可以是餐厅、超市、景点、酒店、车站、停车场等。兴趣点通常包含四方面信息,分别为名称、类别、坐标、分类。其中,分类一般有一级分类和二级分类,每个分类都有相应的行业的代码和名称一一对应。 POI包含的信息及其衍生信息主要包含三个部分:
CnOpenData 收录
RFUAV
RFUAV数据集是由浙江科技大学信息科学与工程学院开发的高质量原始射频数据集,包含37种不同无人机的约1.3 TB原始频率数据。该数据集旨在解决现有无人机检测数据集类型单一、数据量不足、信号-to-噪声比(SNR)范围有限等问题,提供了丰富的SNR级别和用于特征提取的基准预处理方法及模型评估工具。数据集适用于射频无人机检测和识别,有助于推动相关技术的研究与应用。
arXiv 收录
