five

Data from: A single multiplex of twelve microsatellite markers for the simultaneous study of the brown hare (Lepus europaeus) and the mountain hare (Lepus timidus)

收藏
DataONE2017-04-25 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
The management of hunted species is challenging, as it must conciliate the conservation of species and their sustainable exploitation. Non-genetic tools are widely used in this context but they may present limitations notably when species can hybridize or when large-scale spatial monitoring is required to establish optimal management actions. This is why genetic tools have been more and more integrated in wildlife management practices. However, the markers proposed are often amplified in small multiplexes when larger ones could allow to better cope with the small quantities of DNA obtained with non-invasive sampling methods. Here, we propose a unique multiplex of 12 autosomal microsatellite markers for the study of two hare species that exist in sympatry in some areas in Europe and are hunted notably in France: the brown hare Lepus europaeus and the mountain hare L. timidus. We tested 17 markers previously used in these two species or other lagomorph species, from which 12 were included in this single multiplex. Diversity was between 4 and 30 alleles per locus totalling 126 alleles and we showed that these markers possess appropriate genetic resolution for individual and species identification for the populations under study. This multiplex panel represents the largest number of microsatellites amplified in one reaction proposed for these two hare species and provides a cost-effective and valuable tool for further hybridization studies and the management of hares.
创建时间:
2017-04-25
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MNBVC

MNBVC数据集是一个超大规模的中文语料集,包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。

github 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

XS-Video

XS-Video数据集是由中国科学院自动化研究所MAIS实验室提出的一个大规模现实世界短视频传播数据集。该数据集收集了来自中国五大平台(抖音、快手、西瓜视频、今日头条、哔哩哔哩)的117720个短视频,包含381926个样本和535个话题,覆盖了从发布后的互动信息,如观看、点赞、分享、收藏、粉丝和评论等。数据集通过跨平台指标对齐方法,对视频的长期传播影响力进行评分,分为0到9级,旨在为短视频传播研究提供全面的互动信息和内容特征。

arXiv 收录

市规划和自然资源局-深圳市建设项目用地批准信息(划拨)

市规划和自然资源局-深圳市建设项目用地批准信息(划拨)

深圳市政府数据开放平台 收录

中国社会事件数据库(CSED)

中国社会事件数据库(CSED)是一个基于时间线的事件汇总和分析工具,旨在记录每日社会动态与网络舆情。

github 收录