five

Data from: Reporting quality of randomized controlled trial abstracts among high-impact general medical journals: a review and analysis

收藏
DataONE2016-07-07 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Objective: To assess adherence to The Consolidated Standards of Reporting Trials (CONSORT) for Abstracts by five high-impact general medical journals and to assess whether quality of reporting was homogeneous across these journals. Design: Descriptive, cross-sectional study. Setting: Randomized Controlled Trial (RCT) abstracts in five high-impact general medical journals. Participants: We used up to 100 RCT abstracts published between 2011 and 2014 from each of the following journals: The New England Journal of Medicine (NEJM), the Annals of Internal Medicine (Annals IM), The Lancet, the British Medical Journal (The BMJ), and the Journal of the American Medical Association (JAMA). Main Outcome: The primary outcome was percent overall adherence to the 19-item CONSORT for abstracts checklist. Secondary outcomes included percent adherence in checklist subcategories and assessing homogeneity of reporting quality across the individual journals. Results: Search results yielded 466 abstracts, three of which were later excluded as they were not RCTs. Analysis was performed on 463 abstracts (97 from NEJM, 66 from Annals IM, 100 from The Lancet, 100 from The BMJ, 100 from JAMA). Analysis of all scored items showed an overall adherence of 67% (95% CI, 66-68%) to the CONSORT for Abstracts checklist. The Lancet had the highest overall adherence rate (78%; 95% CI, 76-80%) while NEJM had the lowest (55%; 95% CI, 53-57%). Adherence rates to eight of the checklist items differed by greater than 25% between journals. Conclusion: Among the five highest-impact general medical journals, there is variable and incomplete adherence to the CONSORT for Abstracts reporting checklist of randomized trials, with substantial differences between individual journals. Lack of adherence to the CONSORT for Abstracts reporting checklist by high-impact medical journals impedes critical appraisal of important studies. We recommend diligent assessment of adherence to reporting guidelines by authors, reviewers, and editors to promote transparency and unbiased reporting of abstracts.
创建时间:
2016-07-07
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face2024-03-04 收录

Beijing Traffic

The Beijing Traffic Dataset collects traffic speeds at 5-minute granularity for 3126 roadway segments in Beijing between 2022/05/12 and 2022/07/25.

Papers with Code2024-05-15 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com2024-10-25 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github2024-12-30 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com2024-10-25 收录