five

Data of nutrient budget section

收藏
DataONE2016-06-01 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Data used in Figs 2-4 in the nutrient budget section of the paper. See notes in data file for variable description.
创建时间:
2016-06-01
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Photovoltaic power plant data

包括经纬度、电源板模型、NWP等信息。

github 收录

中国农村教育发展报告

该数据集包含了中国农村教育发展的相关数据,涵盖了教育资源分布、教育质量、学生表现等多个方面的信息。

www.moe.gov.cn 收录

Fruits-360

一个高质量的水果图像数据集,包含多种水果的图像,如苹果、香蕉、樱桃等,总计42345张图片,分为训练集和验证集,共有64个水果类别。

github 收录

SeaDronesSee

SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。

arXiv 收录

电商购物用户行为分析数据

电商购物用户行为分析数据 这份数据集是一个顾客购物信息的集合,记录了不同顾客在不同时间的购物行为。每一行代表一个单独的购物发票记录,数据集中包含了以下属性: 数据属性: 1. invoice_no: 发票号码,是每次交易的唯一标识符。 2. customer_id: 顾客的ID,用于标识不同的顾客。 3. gender: 顾客的性别,分为"Male"(男性)和"Female"(女性)。 4. age: 顾客的年龄。 5. category: 顾客购买的商品类别,如"Clothing"(服装)、"Shoes"(鞋子)、"Books"(书籍)、"Cosmetics"(化妆品)、"Toys"(玩具)、"Food & Beverage"(食品和饮料)、"Technology"(科技产品)、"Souvenir"(纪念品)等。 6. quantity: 顾客购买的商品数量。 7. price: 顾客为这次购物支付的总金额。 8. payment_method: 顾客使用的支付方式,包括"Alipay"(支付宝)、"WeChat Pay"(微信支付)、"Card"(银行卡)。 9. invoice_date: 发票日期,记录了交易发生的日期。

阿里云天池 收录