five

Data from: The good, the bad, and the ugly: the influence of skull reconstructions and intraspecific variability in studies of cranial morphometrics in theropods and basal saurischians

收藏
DataONE2013-08-12 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Several studies investigating macroevolutionary skull shape variation in fossil reptiles were published recently, often using skull reconstructions taken from the scientific literature. However, this approach could be potentially problematic, because skull reconstructions might differ notably due to incompleteness and/or deformation of the material. Furthermore, the influence of intraspecific variation has usually not been explored in these studies. Both points could influence the results of morphometric analyses by affecting the relative position of species to each other within the morphospace. The aim of the current study is to investigate the variation in morphometric data between skull reconstructions based on the same specimen, and to compare the results to shape variation occurring in skull reconstructions based on different specimens of the same species (intraspecific variation) and skulls of closely related species (intraspecific variation). Based on the current results, shape variation of different skull reconstructions based on the same specimen seems to have generally little influence on the results of a geometric morphometric analysis, although it cannot be excluded that some erroneous reconstructions of poorly preserved specimens might cause problems occasionally. In contrast, for different specimens of the same species the variation is generally higher than between different reconstructions based on the same specimen. For closely related species, at least with similar ecological preferences in respect to the dietary spectrum, the degree of interspecific variation can overlap with that of intraspecific variation, most probably due to similar biomechanical constraints.
创建时间:
2013-08-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

MeSH

MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。

www.nlm.nih.gov 收录

UIEB, U45, LSUI

本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。

github 收录

ISIC 2018

ISIC 2018数据集包含2594张皮肤病变图像,用于皮肤癌检测任务。数据集分为训练集、验证集和测试集,每张图像都附有详细的元数据,包括病变类型、患者年龄、性别和解剖部位等信息。

challenge2018.isic-archive.com 收录

cifar10

该数据集包含了完整的CIFAR10数据集,通过PyTorch下载并分割成.png格式的32x32图片。数据集分为三个部分:训练集(train,49,000个样本)、校准集(calibration,1,000个样本)和测试集(test,10,000个样本),每个部分按类别平衡。

huggingface 收录