Biomechanics dataset|生物力学数据集|开放数据数据集
收藏数据集概述
[Kinematics + forces + EMG] 数据集
- R Macaluso, K Embry, D Villarreal, R Gregg, "Human Leg Kinematics, Kinetics, and EMG during Phase-Shifting Perturbations at Varying Inclines", IEEE Dataport, 2020. 在线访问
- Lencioni, Tiziana; CARPINELLA, ILARIA; Rabuffetti, Marco; Marzegan, Alberto; Ferrarin, Maurizio (2019): Human kinematic, kinetic and EMG data during level walking, toe/heel-walking, stairs ascending/descending. figshare. Collection. 在线访问
- K. Embry, D. Villarreal, R. Macaluso, R. Gregg, "The Effect of Walking Incline and Speed on Human Leg Kinematics, Kinetics, and EMG", IEEE Dataport, 2018. 在线访问
- Wang, Wei; Li, Ke; Yue, Shouwei; Yin, Cuiping; Wei, Na (2017): Associations between lower-limb muscle activation and knee flexion in post-stroke individuals: A study on the stance-to-swing phases of gait. PLOS ONE. Dataset. 在线访问
[Kinematics + forces/EMG] 数据集
- Laboratory for Movement Biomechanics, ETH Zürich: https://movement.ethz.ch/data-repository.html
- University of Pennsylvania SIG Center for Computer Graphics Multi Modal Motion Capture Library: https://fling.seas.upenn.edu/~mocap/
- Hood, Sarah; Lenzi, Tommaso (2020): Lower Limb Kinetic and Kinematic Data of 18 Above Knee Amputees. figshare. Dataset. 在线访问
- Horst, Fabian; Lapuschkin, Sebastian; Samek, Wojciech; Müller, Klaus-Robert; Schöllhorn, Wolfgang I. (2019), “A public dataset of overground walking kinetics and full-body kinematics in healthy adult individuals”, Mendeley Data, v3 在线访问
- Matijevich, E. S., Branscombe, L. M., Scott, L. R., & Zelik, K. E. (2019). Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PloS one, 14(1), e0210000. 数据访问
- Honert, Eric C., & Zelik, Karl E. (2019). Dataset from: Honult and Zelik (2019) "Foot and shoe responsible for majority of soft tissue work in early stance of walking" [Data set]. Zenodo. 在线访问
- Caravan A, Scheffey JO, Briend SJ, Boddy KJ. 2018. Surface electromyographic analysis of differential effects in kettlebell carries for the serratus anterior muscles. PeerJ 6:e5044 数据访问
- Deborah A. Jehu, Hiram Cantu, Allen Hill, Caroline Paquette, Julie N. Cote, & Julie Nantel. (2018). Standing repetitive pointing task in individuals with and without Parkinsons disease (Version v1.0.0) [Data set]. Zenodo. 在线访问
- Ozkaya, Gizem; Jung, Hae Ryun; Jeong, In Sub; Choi, Min Ra; Shin, Min Young; Lin, Xue; et al. (2018): Three-dimensional motion capture data during repetitive overarm throwing practice. figshare. Collection. 在线访问
- Lunn, David and Chapman, Graham and Redmond, Anthony (2018) Motion analysis in total joint replacement patients: Data Release 1. University of Leeds. 数据集
- Goršič, Maja, Dai, Boyi, & Novak, Domen. (2020). Load position and weight classification during carrying gait using wearable inertial and electromyographic sensors [Data set]. Zenodo. 在线访问
- Matran-Fernandez, A., Rodríguez Martínez, I.J., Poli, R. et al. SEEDS, simultaneous recordings of high-density EMG and finger joint angles during multiple hand movements. Sci Data 6, 186 (2019). 数据访问
- Krasoulis, Agamemnon; Vijayakumar, Sethu; Nazarpour, K. (2019): EMG and data glove dataset for dexterous myoelectric control. Newcastle University. Dataset. 在线访问
- Donati, Elisa. (2019). EMG from forearm datasets for hand gestures recognition [Data set]. Zenodo. 在线访问
- Jarque-Bou, Nestor, Vergara, Margarita, Sancho-Bru, Joaquín L., Gracia-Ibáñez, Verónica, & Roda-Sales, Alba. (2019). A calibrated database of kinematics and EMG of the forearm and hand during activities of daily living (Version 1.0) [Data set]. Zenodo. 在线访问
- De Graaf, Myriam Lauren, Hubert, Juul, Houdijk, Han, & Bruijn, Sjoerd M. (2019). Data: Influence of Arm Swing on Cost of Transport during Walking [Data set]. Zenodo. 在线访问
- Mohammadreza Mahaki, Sjoerd M. Bruijn, & Jaap H. van Dieën. (2019). Data: The effect of external lateral stabilization on the use of foot placement to control mediolateral stability in walking and running [Data set]. 在线访问
- Hu, Blair (2018): Benchmark datasets for bilateral lower limb neuromechanical signals from wearable sensors during unassisted locomotion in able-bodied individuals. figshare. Dataset. 在线访问
- Mohr, Maurice; Schön, Tanja; von Tscharner, Vinzenz; Nigg, Benno (2018), “Data for: Intermuscular Coherence between Surface EMG Signals recorded with Monopolar and Bipolar EMG Systems during Squatting”, Mendeley Data, v1 在线访问
- HuGaDB: https://github.com/romanchereshnev/HuGaDB
[Kinematics only] 数据集
- KIT Whole-Body Human Motion Database: https://motion-database.humanoids.kit.edu/
- SFU Motion Capture Database: http://mocap.cs.sfu.ca/
- Mocap Database HDM05: http://resources.mpi-inf.mpg.de/HDM05/index.html
- UMONS-TAICHI: https://github.com/numediart/UMONS-TAICHI 数据访问
- Berkeley Multimodal Human Action Database (MHAD): https://tele-immersion.citris-uc.org/berkeley_mhad
- Dance Motion Capture Database: http://dancedb.eu/
- The UMPM Benchmark: http://www2.projects.science.uu.nl/umpm/
- Cologne Motion Capture Database: https://mocap.web.th-koeln.de/
- AnDyDataset: https://andydataset.loria.fr/
- Rengifo Rodas, Carlos Felipe; Caicedo Rodríguez, Pablo Eduardo ; Rodriguez Cheu, Luis Eduardo; Sierra Arevalo, Wilson Alexander; Gómez Guevara, Maria Catalina (2020), “Dataset for gait analysis and assessment of fall risk for older adults”, Mendeley Data, v1 在线访问
- Boddy, K. J., Marsh, J. A., Caravan, A., Lindley, K. E., Scheffey, J. O., & O’Connell, M. E. (2019). Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery. PeerJ, 7, e6365. 在线访问
- Maurice, Pauline, Malaisé, Adrien, Ivaldi, Serena, Rochel, Olivier, Amiot, Clelie, Paris, Nicolas, … Fritzsche, Lars. (2019). AndyData-lab-onePerson (Version 2) [Data set]. The International Journal of Robotics Research. Zenodo. 在线访问
- Malaisé, Adrien, Maurice, Pauline, Ivaldi, Serena, Colas, Francis, & Rochel, Olivier. (2018). AndyData-lab-onePersonWithShoes (Version 1) [Data set]. Zenodo. 在线访问
- Maurice, Pauline, Camernik, Jernej, Gorjan, Dasa, Babic, Jan, Schirrmeister, Benjamin, Bornmann, Jonas, … Pucci, Daniele. (2018). AndyData-lab-onePersonWithExoskeleton (Version 1) [Data set]. IEEE Transactions on Neural Systems and Rehabilitation Engineering. Zenodo. 在线访问
- Drew, Alex J., Izykowski, Morgan T., Bachus, Kent N., Henninger, Heath B., & Foreman, K. Bo. (2017). Transhumeral Loading During Advanced Upper Extremity Activities of Daily Living [Data set]. Zenodo. 在线访问
- Huang, Yu-Fen; Moran, Nikki; Coleman, Simon. (2017). Orchestral conducting motion capture data, 2015 [dataset]. Reid School of Music, University of Edinburgh; Institute for Sport, Physical Education and Health Sciences, University of Edinburgh. 在线访问
- HuMoD Database: https://www.sim.informatik.tu-darmstadt.de/res/ds/humod/
- Emotional Body Motion Database: http://ebmdb.tuebingen.mpg.de/index.php
- Human 3.6M: http://vision.imar.ro/human3.6m/
- Interaction Database CGVU @ The University of Edinburgh: http://www.ipab.inf.ed.ac.uk/cgvu/InteractionDatabase/interactiondb.html
- MoCap ULL Project: http://atrae.webs.ull.es/capturadormovimiento/
- HumanEva: http://humaneva.is.tue.mpg.de/
- Luo, Yue; Coppola, Sarah; Dixon, Philippe; Li, Song; Dennerlein, Jack; Hu, Boyi (2020): A database of human gait performance on irregular and uneven surfaces collected by wearable sensors. figshare. Collection. 在线访问
- Schwarz, Anne, Bhagubai, Miguel M. C., Wolterink Gerjan, Held, Jeremia P. O., Luft, Andreas R., & Veltink, Peter H. (2020). Kinematics of reach-to-grasp and displacement after stroke [Data set]. Zenodo. 在线访问
- Schwarz, Anne, Held, Jeremia P. O., & Luft, Andreas R. (2020). Post-stroke upper limb kinematics of a set of daily living tasks (Version 1.0.0) [Data set]. Zenodo. 在线访问
- Vieten, Manfred, & Weich, Christian. (2019). The kinematics of cyclic human movement [Data set]. Zenodo. 在线访问
- NIU, Haijun; SHEN, Fei; GAO, Xing; Fan, Yubo; WANG, Li; MA, Yingnan (2018), “Data for: Dynamic walking stability of elderly people with various BMIs”, Mendeley Data, v1 在线访问
[Other] 数据集
- AMASS: https://amass.is.tue.mpg.de/
- WhoLoDance: http://www.wholodance.eu/
- AIST Gait Database 2019: https://unit.aist.go.jp/harc/ExPART/GDB2019_e.html
- Brokoslaw Laschowski, Reza Sharif Razavian, John McPhee, "Measurement and Simulation of Human Sitting and Standing Movement Biomechanics ", IEEE Dataport, 2019. 在线访问
- Ilaria Mileti, Aurora Serra, Nerses Wolf, Victor Munoz-Martel, Antonis Ekizos, Eduardo Palermo, … Alessandro Santuz. (2020). Muscle activation patterns are more constrained and regular in treadmill than in overground human locomotion (Version 1.1.0) [Data set]. Zenodo. 在线访问
- Santuz, Alessandro, Ekizos, Antonis, Kunimasa, Yoko, Kijima, Kota, Ishikawa, Masaki, & Arampatzis, Adamantios. (2020). Lower complexity of motor primitives ensures robust control of high-speed human locomotion (Version 1.2.0) [Data set]. Zenodo. 在线访问
- **Santuz, Alessandro, Ekizos, Antonis, Janshen, Lars, Mersmann, Falk, Bohm, Sebastian, Baltzopoulos, Vasilios, & Arampatzis, Adamantios. (2020). Modular control of human movement

中国气象数据
本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。
github 收录
Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
GME Data
关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。
github 收录
中国1km分辨率逐月降水量数据集(1901-2023)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录