five

Data from: Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities

收藏
DataONE2018-08-10 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Metabarcoding combines DNA barcoding with high-throughput sequencing, often using one genetic marker to understand complex and taxonomically diverse samples. However, species-level identification depends heavily on the choice of marker and the selected primer pair, often with a trade-off between successful species amplification and taxonomic resolution. We present a versatile metabarcoding protocol for biomonitoring that involves the use of two barcode markers (COI and 18S) and four primer pairs in a single high-throughput sequencing run, via sample multiplexing. We validate the protocol using a series of 24 mock zooplanktonic communities incorporating various levels of genetic variation. With the use of a single marker and single primer pair, the highest species recovery was 77%. With all three COI fragments, we detected 62-83% of species across the mock communities, while the use of the 18S fragment alone resulted in the detection of 73-75% of species. The species detection level was significantly improved to 89-93% when both markers were used. Furthermore, multiplexing did not have a negative impact on the proportion of reads assigned to each species and the total number of species detected was similar to when markers were sequenced alone. Overall, our metabarcoding approach utilizing two barcode markers and multiple primer pairs per barcode improved species detection rates over a single marker/primer pair by 14% to 35%, making it an attractive and relatively cost-effective method for biomonitoring natural zooplankton communities. We strongly recommend combining evolutionary independent markers and, when necessary, multiple primer pairs per marker to increase species detection (i.e. reduce false negatives) in metabarcoding studies.
创建时间:
2018-08-10
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Billboard-Hot-100

该数据集包含了自1958年以来所有Billboard Hot 100榜单的历史数据,详细记录了每首歌曲的排名、日期、表演者等信息。

github 收录

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录

云浮市失信被执行人名单信息

该数据包含了2022年至今云浮市失信被执行人名单信息,指云浮市政务服务数据管理局对该信息的变动情况进行跟踪、采集、预测、分析、公布等活动。

开放广东 收录

Differential introgression in a mosaic hybrid zone reveals candidate barrier genes

Hybrid zones act as genomic sieves; although globally advantageous alleles will spread throughout the zone and neutral alleles can be freely exchanged between species, introgression will be restricted for genes that contribute to reproductive barriers or local adaptation. Seminal fluid proteins (SFPs) are known to contribute to reproductive barriers in insects and have been proposed as candidate barrier genes in the hybridizing field crickets G. pennsylvanicus and G. firmus. Here, we have used 125 SNPs to characterize patterns of differential introgression and to identify genes that may contribute to prezygotic barriers between these species. Using a transcriptome scan of the male cricket accessory gland (the site of SFP synthesis), we identified genes with major allele frequency differences between the species. We then compared patterns of introgression for genes encoding seminal fluid proteins with patterns for genes expressed in the same tissue that do not encode SFPs. We find no evi...

DataONE 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录