OpenWebText|网络文本分析数据集|社交媒体数据数据集
收藏
- OpenWebText数据集首次发布,由OpenAI的研究人员创建,旨在提供一个大规模的、多样化的文本数据集,用于训练语言模型。
- OpenWebText数据集被广泛应用于多个自然语言处理任务,包括文本生成、机器翻译和问答系统,显著提升了这些任务的性能。
- 随着更多研究者和开发者的使用,OpenWebText数据集的影响力进一步扩大,成为自然语言处理领域的重要基准数据集之一。
- 1OpenWebText: An Open-Source Alternative to WebTextOpenAI · 2019年
- 2Language Models are Few-Shot LearnersOpenAI · 2020年
- 3The Pile: An 800GB Dataset of Diverse Text for Language ModelingEleutherAI · 2020年
- 4Scaling Laws for Neural Language ModelsOpenAI · 2020年
- 5Improving Language Understanding by Generative Pre-TrainingOpenAI · 2018年
CTD (Comparative Toxicogenomics Database)
CTD是一个综合性的数据库,旨在通过整合基因、化学物质、疾病和环境暴露的数据,来促进对环境因素与人类疾病之间关系的理解。该数据库包括化学物质与基因的相互作用、化学物质与疾病的关联、基因与疾病的关联以及化学物质与环境暴露的关联。CTD还提供数据下载、API访问和在线查询工具。
ctdbase.org 收录
Natural Questions
Natural Questions (NQ) 包含真实用户向Google搜索提出的问题,以及注释者从维基百科找到的答案。NQ旨在用于训练和评估自动问答系统。
github 收录
WorldClim
WorldClim is a website that contains a database of high spatial resolution global weather and climate data. This data can be used for mapping and spatial modeling. The data is provided for use in research and related activities. The website contains three types of data. First, ""historical climate data (WorldClim version 2.1)"" contains 19 “bioclimatic” variables related to temperature, precipitation, solar radiation, wind speed, and water vapor pressure. These data are available for 1970-2000 period at a spatial scale of ~1 km2 (30 seconds) gridded area. These data are constructed from multiple data sources. Second, the “Historical monthly weather data” contains historical monthly weather data for 1960-2018. These data are downscaled from CRU-TS-4.06 by the Climatic Research Unit, University of East Anglia, using WorldClim 2.1 for bias correction. The variables available are average minimum temperature (°C), average maximum temperature (°C) and total precipitation (mm). The lowest spatial resolution at which the data is available is 2.5 minutes (~21 km2 at the equator). Third, “Future climate data” contains CMIP6 downscaled future climate projections. The downscaling and calibration (bias correction) was done with WorldClim v2.1 as baseline climate. Monthly values of minimum temperature, maximum temperature, and precipitation were processed for 23 global climate models (GCMs), and for four Shared Socio-economic Pathways (SSPs): 126, 245, 370 and 585. The monthly values were averages over 20 year periods (2021-2040, 241-2060, 2061-2080, 2081-2100). The lowest spatial resolutions at which the data is available is 30 seconds.
DataCite Commons 收录
VEDAI
用于训练YOLO模型的VEDAI数据集,包含图像和标签,用于目标检测和跟踪。
github 收录
ECMWF Reanalysis v5 (ERA5)
ERA5 是第五代 ECMWF 全球气候大气再分析,涵盖从 1940 年 1 月至今的时期。ERA5 由 ECMWF 的哥白尼气候变化服务 (C3S) 制作。 ERA5 提供大量大气、陆地和海洋气候变量的每小时估计值。这些数据以 30 公里的网格覆盖地球,并使用从地表到 80 公里高度的 137 个级别解析大气。ERA5 包括有关所有变量在降低空间和时间分辨率下的不确定性的信息。
OpenDataLab 收录