five

Mulberry Leaf Dataset|桑叶识别数据集|图像分类数据集

收藏
DataCite Commons2025-05-01 更新2025-04-16 收录
桑叶识别
图像分类
下载链接:
https://data.mendeley.com/datasets/ds45yy9jrc
下载链接
链接失效反馈
资源简介:
Data collection: We collected the mulberry leaf cultivars from three regions of Thailand (northern, central, and northeast) that included five provinces in total (Chiang Mai, Phitsanulok, Nakhon Ratchasima, Burriram, and Mahasarakham). DSLR and phone cameras were used to take images with different perspectives from ten mulberry leaf cultivars recorded in the natural environments with different perspectives. The mulberry leaf dataset includes 5,262 images of 10 mulberry leaf cultivars: King Red, King White, Taiwan Maechor, Taiwan Strawberry, Black Austurkey, Black Australia, Chiang Mai 60, Buriram 60, Kamphaeng Saen 42, and Mixed Chiang Mai 60+Buriram 60. Data description: The mulberry leaf dataset was curated in 2020 using digital single-lens reflex (DSLR) and smartphone cameras to collect 5,262 images categorized into ten classes existing in diverse environmental conditions. No seasonal considerations were factored in during the data collection; however, all data was collected on the sunny days. There is no existence of external plants in the samples of the mulberry leaves, but there are some natural backgrounds of the brown soil and the mulberry tree, which exist in small proportion relative to the mulberry leaves. The image format of the mulberry leaf dataset exists in JPEG format and has varying resolution sizes. The researcher captured mulberry leaf images from various regions and provinces in Thailand for eight months. The image captures of mulberry leaves were taken from five Thai areas, as shown in Fig. 1. Further, the dataset was annotated by a domain expert responsible for classifying each of the mulberry leaves into their respective classes or categories. The leaves with similar features or properties were stored in a specific folder (class), resulting in ten possible classes. Data source location: The mulberry leaf dataset was collected from three regions of Thailand: northern (Chiang Mai), central (Phitsanulok), and northest (Nakhon Ratchasima, Burriram, and Mahasarakham). Related research article: Chompookham, T. & Surinta, O. (2021). Ensemble methods with deep convolutional neural networks for plant leaf recognition. ICIC Express Letters, 15(6), 553-565. DOI: 10.24507/icicel.15.06.553
提供机构:
Mendeley Data
创建时间:
2023-04-03
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录