five

Data from: Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs

收藏
DataONE2016-12-01 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Parasites and competitors are important for regulating pathogen densities and subsequent disease dynamics. It is, however, unclear to what extent this is driven by ecological and evolutionary processes. Here we used experimental evolution to study the eco-evolutionary feedbacks between Ralstonia solanacearum bacterial pathogen, Ralstonia-specific phage parasite and Bacillus amyloliquefaciens competitor bacterium in the laboratory and plant rhizosphere. We found that while the phage had a small effect on pathogen densities on its own, it considerably increased the R. solanacearum sensitivity to antibiotics produced by B. amyloliquefaciens. Instead of density effects, this synergy was due to phage-driven increase in phage resistance that led to trade-off with the resistance to B. amyloliquefaciens antibiotics. While no evidence was found for pathogen resistance evolution to B. amyloliquefaciens antibiotics, the fitness cost of adaptation (reduced growth) was highest when the pathogen had evolved in the presence of both parasite and competitor. Qualitatively similar patterns were found between laboratory and greenhouse experiments even though the evolution of phage resistance was considerably attenuated in the tomato rhizosphere. These results suggest that evolutionary trade-offs can impose strong constraints on disease dynamics and that combining phages and antibiotic-producing bacteria could be an efficient way to control agricultural pathogens.
创建时间:
2016-12-01
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

库帕思金融大模型评测数据集(2024版)

金融大模型评测数据集(2024版),对标《金融大模型应用测评指南》(T/SAIAS 019—2024),涵盖金融行业核心领域,数据来自金融机构行业实践,是金融领域大模型应用成效评测的重要抓手。 评测数据集比照最高水平、最好标准,具有规模大、结构优、价值对齐等特点,符合金融领域对知识鲜活度、多样性和高密度的整体要求。 聚焦“模型基础能力”,围绕计算能力、逻辑推理等6个维度,设计评测数据22000余句对。 聚焦“金融安全与价值对齐能力”,围绕信息内容、社会秩序等13个维度,设计评测数据2000余句对。 聚焦“金融风险控制能力”,围绕合规、市场、操作等5类金融风险,设计评测数据1000余句对。 聚焦“金融业务辅助拓展能力”,围绕舆情分析、智能投研等3项业务场景,设计评测数据12000余句对。 聚焦“金融专业认知能力”,围绕金融专业知识、IPO图表等7种知识类型,设计评测数据7000余句对。 金融大模型评测数据集定期更新、动态迭代,1250条样例集已在Open Data Lab完成开源。

OpenDataLab 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录