five

Data from: Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem

收藏
DataONE2015-07-01 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.
创建时间:
2015-07-01
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AlphaFold Protein Structure Database

AlphaFold是由Google DeepMind开发的AI系统,可从氨基酸序列预测蛋白质的三维结构,其准确性媲美实验方法。Google DeepMind与欧洲生物信息学研究所(EMBL-EBI)合作创建了AlphaFold Protein Structure Database,免费向科学界开放,现已涵盖超过2亿条UniProt蛋白序列,包含人类及47种重要生物的蛋白质组。

alphafold.com 收录

giovannidemuri__sharegpt-ex50000-seed5_llama8b-er-v573-seed2-hx_256_ngt0.7_tp0.9

该数据集包含了用户与助手之间的对话,其中包含两个字段:用户发言和助手回应,均为字符串类型。训练集大小为38646852字节,共有44096条对话记录。

huggingface 收录

糖尿病预测数据集

糖尿病相关的医学研究或者健康数据

AI_Studio 收录

Subway Dataset

该数据集包含了全球多个城市的地铁系统数据,包括车站信息、线路图、列车时刻表、乘客流量等。数据集旨在帮助研究人员和开发者分析和模拟城市交通系统,优化地铁运营和乘客体验。

www.kaggle.com 收录

PartNet

我们介绍了PartNet: 一个一致的、大规模的三维对象数据集,用细粒度的、实例级的和分层的三维零件信息进行注释。我们的数据集包括573,585个零件实例,超过26,671个3D模型,涵盖24个对象类别。该数据集支持并充当许多任务的催化剂,例如形状分析,动态3D场景建模和仿真,可承受分析等。使用我们的数据集,我们建立了用于评估3D零件识别的三个基准任务: 细粒度语义分割,分层语义分割和实例分割。我们对四种最先进的3D深度学习算法进行了基准测试,用于细粒度语义分割,并对三种基线方法进行了基准测试。我们还提出了一种新颖的零件实例分割方法,并证明了其优于现有方法的性能。

OpenDataLab 收录