five

Concentrations of dissolved micronutrient trace metals (Fe, Zn, Ni, Cu, Cd, Pb, Mn) in seawater, sea ice, and melt ponds collected during the US GEOTRACES Arctic cruise (HLY1502; GN01) on USCGC Healy from August to October 2015

收藏
DataONE2023-07-07 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/sha256:90079a06e725e01b7f6607a16955de38b949bd1fbb23cdda4e6b8ac7cff0beeb
下载链接
链接失效反馈
资源简介:
<p>Concentrations of dissolved micronutrient trace metals (Fe, Zn, Ni, Cu, Cd, Pb, Mn) in seawater, sea ice, and melt ponds&nbsp;collected on&nbsp;the US GEOTRACES Arctic cruise (HLY1502, GN01) from August to October 2015.</p> <p>These data have been published in the following:<br /> Marsay et al., 2018 – Melt pond metal concentrations<br /> Kadko et al., 2019 – Surface seawater metal concentrations<br /> Jensen et al., 2019 – Dissolved Zn seawater concentrations<br /> Zhang et al., 2019 – Dissolved Cd seawater concentrations<br /> Charette et al., 2020 – Upper ocean dissolved metal concentrations<br /> Jensen, 2020 (PhD Dissertation)</p>
创建时间:
2023-12-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

COCA (Corpus of Contemporary American English)

COCA是一个包含超过5.2亿词的英语语料库,涵盖了从1990年至今的文本。它包括口语、小说、流行杂志、报纸和学术文章五种文体,旨在反映当代美国英语的使用情况。

www.english-corpora.org 收录

yuvidhepe/us-accidents-updated

这是一个覆盖美国49个州的全国性交通事故数据集,数据收集自2016年2月至2023年3月,通过多种交通API实时收集。目前数据集中包含约770万条交通事故记录,可用于实时交通事故预测、热点位置研究、伤亡分析以及环境因素对事故发生的影响研究等。

hugging_face 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

China Air Quality Historical Data

该数据集包含了中国多个城市的空气质量历史数据,涵盖了PM2.5、PM10、SO2、NO2、CO、O3等污染物浓度以及空气质量指数(AQI)等信息。数据按小时记录,提供了详细的空气质量监测数据。

www.cnemc.cn 收录