five

PISCO: Physical Oceanography: moored temperature data: Sand Hill Bluff, California, USA (SHB001)|海洋学数据集|温度监测数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
海洋学
温度监测
下载链接:
https://data.piscoweb.org/metacatui/#view/doi:10.6085/AA/SHB001_021MXTI012R00_20060716.50.3
下载链接
链接失效反馈
资源简介:
This metadata record describes moored seawater temperature data collected at Sand Hill Bluff, California, USA, by PISCO. Measurements were collected using a StowAway XTI Temperature Logger (Onset Computer Corp. XTI32-05+37) beginning 2006-07-16. The instrument depth was 012 meters, in an overall water depth of 21 meters (both relative to Mean Sea Level, MSL). The sampling interval was 2.0 minutes.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

O*NET

O*NET(Occupational Information Network)是一个综合性的职业信息数据库,提供了关于各种职业的详细描述,包括技能要求、工作活动、知识领域、工作环境等。该数据集被广泛用于职业分析、教育和劳动力市场研究。

www.onetonline.org 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

全球1km分辨率大气二氧化碳浓度数据集(2003-2023)

持续增加的人为CO₂排放导致了全球变暖和气候变化,进而引发了全球范围的重大环境、经济和健康损失,基于卫星遥感数据准确连续地监测大气CO₂变化对于理解全球碳循环、评估碳源和碳汇的分布以及制定有效的减排政策至关重要。大气CO2柱浓度(XCO2)指从地表到大气顶层干燥空气柱中CO2的平均体积比,是用来表征大气中CO2分子含量的物理量。当前已公开发表的全球无缝XCO2产品存在无法同时提供长时间跨度和高时空分辨率的问题,限制了其更为广泛的科学应用。本数据集基于来自SCIAMACHY、GOSAT 和 OCO-2 三颗卫星/传感器的XCO2观测数据进行二次研发,以卫星XCO2观测数据为训练标签,与 CO₂ 排放、吸收和传输相关的多源因素为解释变量,利用整合了U-Net网络和ConvLSTM网络的深度学习算法构建预测模型,生成了国际首套2003-2023年全球时空连续1公里分辨率逐日XCO2数据集。经全球27个TCCON地面观测站点的验证,结果表明该产品具有较好的精度(决定系数R2为0.989,均方根误差RMSE为1.021ppm)。本数据集为深化对全球碳循环的理解、评估减排政策以及应对气候变化挑战提供了重要的基础数据。

国家青藏高原科学数据中心 收录

QM9

该数据集名为QM9,包含了134,000个分子的信息,可用于生成点云的建模工作,同时也可应用于分子动力学的研究以及点云生成任务中。

arXiv 收录