five

Ethelreda Leopold, Los Angeles, Calif., 1939

收藏
Mendeley Data2024-05-20 更新2024-06-27 收录
下载链接:
https://digitallibrary.usc.edu/asset-management/2A3BF1XVP6HU9
下载链接
链接失效反馈
资源简介:
2 photographs of a woman, one while wearing a hat, probably in the Whittington studio in Los Angeles, California, 1939 March 24. "Client: Whittington" - on envelope.
创建时间:
2024-05-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

yuvidhepe/us-accidents-updated

这是一个覆盖美国49个州的全国性交通事故数据集,数据收集自2016年2月至2023年3月,通过多种交通API实时收集。目前数据集中包含约770万条交通事故记录,可用于实时交通事故预测、热点位置研究、伤亡分析以及环境因素对事故发生的影响研究等。

hugging_face 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

DIV2K

displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录

EdNet

displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录