five

Ring shear test data of quartz sand and colored quartz sand used for analogue modelling in the Laboratorio de modelización analógica, Universidad de Zaragoza, Spain (EPOS TNA call 2017).|地质模拟数据集|材料力学数据集

收藏
Mendeley Data2024-06-25 更新2024-06-29 收录
地质模拟
材料力学
下载链接:
https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:3723907
下载链接
链接失效反馈
资源简介:
This dataset provides friction data from ring-shear tests (RST) on different types of quartz sand used in the Laboratorio de modelización analógica of the Universidad de Zaragoza (UZ, Spain) as an analogue for brittle layers in the crust or lithosphere (Izquierdo-Llavall & Casas-Sainz, 2012; Calvín et al., 2013; Pueyo Anchuela et al., 2016; Peiro et al., 2018; Pueyo et al., 2018; Izquierdo-Llavall et al., submitted). The materials (quartz sand, green coloured quartz sand mixture, black coloured quartz sand) have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Friction coefficients of the pure quartz sand and the green quartz sand mixture are similar (µP = 0.74 – 0.76, µD = 0.56 – 0.60, µR = 0.61 – 0.64), whereas friction coefficients of the black coloured quartz sand are lower (µP = 0.48, µD = 0.39, µR = 0.45). Cohesions of all sands range between 40 and 150 Pa. A minor rate-weakening of ~1 % per ten-fold change in shear velocity v is evident. The tested materials are quartz sands with a grain size of 0.063 – 0.4 mm and bulk densities of ρ = 1610-1800 kg m^-3. The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures and shear velocities similar to sandbox experiments.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录

中国气象站历史气象数据集

该数据集包含中国1000多个气象站从1942年到2024年9月的历史气象数据,数据按年份组织在Database_CN文件夹中,包含28个气象参数,如温度、湿度、气压、风速、能见度等。数据文件以CSV格式存储,命名格式为[StationID]_[StationName]_[Country]_([Longitude],[Latitude]).csv,同时提供station_info.csv文件包含站点元数据信息。

github 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录