five

Ring shear test data of quartz sand and colored quartz sand used for analogue modelling in the Laboratorio de modelización analógica, Universidad de Zaragoza, Spain (EPOS TNA call 2017).|地质模拟数据集|材料力学数据集

收藏
Mendeley Data2024-06-25 更新2024-06-29 收录
地质模拟
材料力学
下载链接:
https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:3723907
下载链接
链接失效反馈
资源简介:
This dataset provides friction data from ring-shear tests (RST) on different types of quartz sand used in the Laboratorio de modelización analógica of the Universidad de Zaragoza (UZ, Spain) as an analogue for brittle layers in the crust or lithosphere (Izquierdo-Llavall & Casas-Sainz, 2012; Calvín et al., 2013; Pueyo Anchuela et al., 2016; Peiro et al., 2018; Pueyo et al., 2018; Izquierdo-Llavall et al., submitted). The materials (quartz sand, green coloured quartz sand mixture, black coloured quartz sand) have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Friction coefficients of the pure quartz sand and the green quartz sand mixture are similar (µP = 0.74 – 0.76, µD = 0.56 – 0.60, µR = 0.61 – 0.64), whereas friction coefficients of the black coloured quartz sand are lower (µP = 0.48, µD = 0.39, µR = 0.45). Cohesions of all sands range between 40 and 150 Pa. A minor rate-weakening of ~1 % per ten-fold change in shear velocity v is evident. The tested materials are quartz sands with a grain size of 0.063 – 0.4 mm and bulk densities of ρ = 1610-1800 kg m^-3. The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures and shear velocities similar to sandbox experiments.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

PTB-Image

PTB-Image是一个包含扫描纸质心电图和相应数字信号的综合数据集,由越南河内VinUniversity College of Engineering and Computer Science和VinUni-Illinois Smart Health Center创建。该数据集旨在推动心电图数字化技术的研究,包含549个记录,每个记录由一位至五位患者的15个同步心电图信号组成,涵盖标准12导联心电图和Frank导联。数据集通过扫描原始PTB数据集的纸质心电图并打印部分信号制作而成,可用于心电图数字化、自动诊断及远程医疗等领域的应用研究。

arXiv 收录

CampusGuard

CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。

github 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录