five

Ring shear test data of quartz sand and colored quartz sand used for analogue modelling in the Laboratorio de modelización analógica, Universidad de Zaragoza, Spain (EPOS TNA call 2017).|地质模拟数据集|材料力学数据集

收藏
Mendeley Data2024-06-25 更新2024-06-29 收录
地质模拟
材料力学
下载链接:
https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:3723907
下载链接
链接失效反馈
资源简介:
This dataset provides friction data from ring-shear tests (RST) on different types of quartz sand used in the Laboratorio de modelización analógica of the Universidad de Zaragoza (UZ, Spain) as an analogue for brittle layers in the crust or lithosphere (Izquierdo-Llavall & Casas-Sainz, 2012; Calvín et al., 2013; Pueyo Anchuela et al., 2016; Peiro et al., 2018; Pueyo et al., 2018; Izquierdo-Llavall et al., submitted). The materials (quartz sand, green coloured quartz sand mixture, black coloured quartz sand) have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Friction coefficients of the pure quartz sand and the green quartz sand mixture are similar (µP = 0.74 – 0.76, µD = 0.56 – 0.60, µR = 0.61 – 0.64), whereas friction coefficients of the black coloured quartz sand are lower (µP = 0.48, µD = 0.39, µR = 0.45). Cohesions of all sands range between 40 and 150 Pa. A minor rate-weakening of ~1 % per ten-fold change in shear velocity v is evident. The tested materials are quartz sands with a grain size of 0.063 – 0.4 mm and bulk densities of ρ = 1610-1800 kg m^-3. The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures and shear velocities similar to sandbox experiments.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

Vehicle Energy Dataset (VED)

Vehicle Energy Dataset (VED)是由密歇根大学创建的一个大规模数据集,包含从2017年11月至2018年11月期间,在美国密歇根州安娜堡收集的383辆个人汽车的燃油和能量数据。该数据集捕捉了车辆的GPS轨迹以及燃油、能量、速度和辅助电源使用的时间序列数据。数据集中的车辆类型多样,包括264辆汽油车、92辆混合动力车和27辆插电式混合动力/电动车。VED数据集总里程约374,000英里,涵盖了从高速公路到交通密集的市中心区域等各种驾驶条件和季节。数据集创建过程中,研究团队通过安装在车辆上的OBD-II记录器收集数据,并对个人身份信息进行了去标识化处理,以保护参与者隐私。VED数据集的应用领域广泛,包括车辆能源消耗建模、驾驶员行为建模、机器学习和深度学习、交通模拟器的校准、最佳路线选择模型、人类驾驶员行为预测以及自动驾驶汽车的决策制定等。

arXiv 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

Allen Brain Atlas

Allen Brain Atlas 是一个综合性的脑图谱数据库,提供了详细的大脑解剖结构、基因表达数据、神经元连接信息等。该数据集包括了小鼠、人类和其他模式生物的大脑数据,旨在帮助研究人员理解大脑的结构和功能。

portal.brain-map.org 收录

维基百科(wiki2019zh)

维基百科json版包含104万个词条,可作为通用中文语料,用于预训练的语料或构建词向量,也可用于构建知识问答。

github 收录