five

Data from: Individual recognition through olfactory - auditory matching in lemurs

收藏
DataONE2014-05-09 更新2024-06-27 收录
公开
3KB
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Individual recognition can be facilitated by creating representations of familiar individuals, whereby information from signals in multiple sensory modalities become linked. Many vertebrate species use auditory–visual matching to recognize familiar conspecifics and heterospecifics, but we currently do not know whether representations of familiar individuals incorporate information from other modalities. Ring-tailed lemurs (Lemur catta) are highly visual, but also communicate via scents and vocalizations. To investigate the role of olfactory signals in multisensory recognition, we tested whether lemurs can recognize familiar individuals through matching scents and vocalizations. We presented lemurs with female scents that were paired with the contact call either of the female whose scent was presented or of another familiar female from the same social group. When the scent and the vocalization came from the same individual versus from different individuals, females showed greater interest in the scents, and males showed greater interest in both the scents and the vocalizations, suggesting that lemurs can recognize familiar females via olfactory–auditory matching. Because identity signals in lemur scents and vocalizations are produced by different effectors and often encountered at different times (uncoupled in space and time), this matching suggests lemurs form multisensory representations through a newly recognized sensory integration underlying individual recognition.
作者:
Kulahci, Ipek G.
开放时间:
2014-05-09
创建时间:
2014-05-09
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4120个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github2024-05-31 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github2024-05-31 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle2024-07-13 收录

NASA Battery Dataset

用于预测电池健康状态的数据集,由NASA提供。

github2024-05-31 收录

Solar Radiation Data

该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。

www.nrel.gov2024-10-25 收录