five

Data from: Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest|害虫管理数据集|遗传学数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
害虫管理
遗传学
下载链接:
https://zenodo.org/records/4956912
下载链接
链接失效反馈
资源简介:
Background: Invasive pest species have large impacts on agricultural crop yields, and understanding their population dynamics is important for ensuring food security. The oriental fruit moth Grapholita molesta is a cosmopolitan pest of stone and pome fruit species including peach and apple, and historical records indicate that it has invaded North and South America, Europe, Australia and Africa from its putative native range in Asia over the past century. Results: We used 13 microsatellite loci, including nine newly developed markers, to characterize global population structure of G. molesta. Approximately 15 individuals from each of 26 globally distributed populations were genotyped. A weak but significant global pattern of isolation-by-distance was found, and G. molesta populations were geographically structured on a continental scale. Evidence does not support that G. molesta was introduced to North America from Japan as previously proposed. However, G. molesta was probably introduced from North America to The Azores, South Africa, and Brazil, and from East Asia to Australia. Shared ancestry was inferred between populations from Western Europe and from Brazil, although it remains unresolved whether an introduction occurred from Europe to Brazil, or vice versa. Both genetic diversity and levels of inbreeding were surprisingly high across the range of G. molesta and were not higher or lower overall in introduced areas compared to native areas. There is little evidence for multiple introductions to each continent (except in the case of South America), or for admixture between populations from different origins. Conclusions: Cross-continental introductions of G. molesta appear to be infrequent, which is surprising given its rapid worldwide expansion over the past century. We suggest that area-wide spread via transport of fruits and other plant materials is a major mechanism of ongoing invasion, and management efforts should therefore target local and regional farming communities and distribution networks.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

DIV2K

displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录

GPQA

GPQA是一个由生物学、物理学和化学领域的专家编写的448个多选题数据集。该数据集的特点是问题质量高且极其困难,即使是具有博士学位或在读博士的专家也仅能达到65%的准确率,而高技能的非专家验证者仅有34%的准确率。数据集旨在用于研究未来AI系统在帮助解答非常困难问题时的可扩展监督方法,特别是在开发新科学知识时。

arXiv 收录