five

Data from: Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest|害虫管理数据集|遗传学数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
害虫管理
遗传学
下载链接:
https://zenodo.org/records/4956912
下载链接
链接失效反馈
资源简介:
Background: Invasive pest species have large impacts on agricultural crop yields, and understanding their population dynamics is important for ensuring food security. The oriental fruit moth Grapholita molesta is a cosmopolitan pest of stone and pome fruit species including peach and apple, and historical records indicate that it has invaded North and South America, Europe, Australia and Africa from its putative native range in Asia over the past century. Results: We used 13 microsatellite loci, including nine newly developed markers, to characterize global population structure of G. molesta. Approximately 15 individuals from each of 26 globally distributed populations were genotyped. A weak but significant global pattern of isolation-by-distance was found, and G. molesta populations were geographically structured on a continental scale. Evidence does not support that G. molesta was introduced to North America from Japan as previously proposed. However, G. molesta was probably introduced from North America to The Azores, South Africa, and Brazil, and from East Asia to Australia. Shared ancestry was inferred between populations from Western Europe and from Brazil, although it remains unresolved whether an introduction occurred from Europe to Brazil, or vice versa. Both genetic diversity and levels of inbreeding were surprisingly high across the range of G. molesta and were not higher or lower overall in introduced areas compared to native areas. There is little evidence for multiple introductions to each continent (except in the case of South America), or for admixture between populations from different origins. Conclusions: Cross-continental introductions of G. molesta appear to be infrequent, which is surprising given its rapid worldwide expansion over the past century. We suggest that area-wide spread via transport of fruits and other plant materials is a major mechanism of ongoing invasion, and management efforts should therefore target local and regional farming communities and distribution networks.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

alpacaGPT4_llama8b-v120-jb-seed2-alpaca_512_ngt0.7_tp0.9

该数据集包含了用户和助手之间的对话,具有用户和助手发言的文本特征,以及一个索引级别特征。数据集分为训练集,共有52001条对话记录。

huggingface 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

库帕思金融大模型评测数据集(2024版)

金融大模型评测数据集(2024版),对标《金融大模型应用测评指南》(T/SAIAS 019—2024),涵盖金融行业核心领域,数据来自金融机构行业实践,是金融领域大模型应用成效评测的重要抓手。 评测数据集比照最高水平、最好标准,具有规模大、结构优、价值对齐等特点,符合金融领域对知识鲜活度、多样性和高密度的整体要求。 聚焦“模型基础能力”,围绕计算能力、逻辑推理等6个维度,设计评测数据22000余句对。 聚焦“金融安全与价值对齐能力”,围绕信息内容、社会秩序等13个维度,设计评测数据2000余句对。 聚焦“金融风险控制能力”,围绕合规、市场、操作等5类金融风险,设计评测数据1000余句对。 聚焦“金融业务辅助拓展能力”,围绕舆情分析、智能投研等3项业务场景,设计评测数据12000余句对。 聚焦“金融专业认知能力”,围绕金融专业知识、IPO图表等7种知识类型,设计评测数据7000余句对。 金融大模型评测数据集定期更新、动态迭代,1250条样例集已在Open Data Lab完成开源。

OpenDataLab 收录

MedTrinity-25M

MedTrinity-25M是由华中科技大学、加州大学圣克鲁兹分校、哈佛大学和斯坦福大学联合创建的一个大规模多模态医学数据集,包含超过2500万张图像,涉及10种模态和65种疾病。数据集通过自动化的数据构建流程生成,不依赖于配对的文本描述,而是通过专家模型和知识库增强的多模态大型语言模型生成多粒度视觉和文本注释。数据集的创建过程包括从90多个在线资源收集数据,应用专家模型识别感兴趣区域(ROIs),并构建知识库以生成详细的文本描述。MedTrinity-25M旨在支持广泛的医学多模态任务,如图像标注和报告生成,以及视觉中心的任务如分类和分割,推动医学领域基础模型的发展。

arXiv 收录