five

Refined Stanford Cars Dataset|汽车识别数据集|图像分类数据集

收藏
github2024-05-11 更新2024-05-31 收录
汽车识别
图像分类
下载链接:
https://github.com/morrisfl/stanford_cars_refined
下载链接
链接失效反馈
资源简介:
本仓库包含对Stanford Cars数据集的精细化标注文件,特点是增加了类别粒度。原始数据集包含196个类别,每个类别代表不同的汽车型号。经过精细化处理后,数据集现在包含1,288个类别,每个类别代表独特的汽车型号和颜色组合。

This repository contains refined annotation files for the Stanford Cars dataset, characterized by an increased granularity of categories. The original dataset comprises 196 categories, each representing a distinct car model. After refinement, the dataset now encompasses 1,288 categories, each denoting a unique combination of car model and color.
创建时间:
2024-01-22
原始信息汇总

数据集概述

数据集名称

  • Refined Stanford Cars Dataset

数据集描述

  • 原始数据集:包含196个类别,每个类别代表一个不同的汽车模型。
  • 精炼后数据集:包含1,288个类别,每个类别代表一个独特的汽车模型和颜色的组合。

数据集改进过程

  • 颜色信息利用:通过颜色分类模型对车辆颜色进行识别和分类。
  • 模型训练:使用Vehicle Color Recognition (VCoR) 数据集对颜色分类模型进行训练,包括线性探针(LP)、微调(FT)和线性探针+微调(LP-FT)。
  • 颜色预测:使用训练好的模型预测Stanford Cars数据集中的汽车颜色。
  • 类别细化:根据预测的颜色信息,增加Stanford Cars数据集的类别粒度。

数据集内容

  • 精炼标注文件:位于data目录下,使用CLIP ConvNeXt-B模型(LP + FT)在VCoR数据集上训练10个epoch后得到。

相关代码和工具

  • 训练代码:用于训练颜色分类模型的代码,详情见IV. Training
  • 精炼过程代码:用于执行数据集精炼过程的代码,详情见V. Refinement

数据集准备

  • VCoR数据集:包含约10,500张图像,分布在15个不同的汽车颜色类别中,用于训练颜色分类模型。
  • Stanford Cars数据集:包含8,144张图像,分布在196个不同的汽车模型类别中,用于精炼过程。

训练结果

  • 线性探针(LP):在VCoR数据集上的验证和测试准确率。
  • 微调(FT):在VCoR数据集上的验证和测试准确率。
  • 线性探针+微调(LP-FT):在VCoR数据集上的验证和测试准确率。

精炼过程

  • 使用训练好的颜色分类模型增强Stanford Cars数据集的类别粒度。
AI搜集汇总
数据集介绍
main_image_url
构建方式
Refined Stanford Cars Dataset的构建方式主要通过增强原始Stanford Cars数据集的类别粒度来实现。原始数据集包含196个类别,每个类别代表不同的汽车型号。经过优化处理后,数据集扩展至1288个类别,每个类别不仅代表汽车型号,还包含汽车颜色信息。这一过程依赖于对图像中颜色信息的利用,通过在Vehicle Color Recognition (VCoR)数据集上进行颜色分类模型的微调或线性探测,预测Stanford Cars数据集中汽车颜色,从而实现类别粒度的提升。
特点
Refined Stanford Cars Dataset的主要特点在于其高度的类别粒度,从原有的196个类别扩展至1288个类别,每个类别代表一个独特的汽车型号和颜色的组合。这种细化的分类方式极大地提升了数据集的多样性和复杂性,使其在汽车识别和分类任务中具有更高的应用价值。此外,数据集的构建过程中使用了先进的颜色分类模型,确保了颜色信息的准确性和可靠性。
使用方法
使用Refined Stanford Cars Dataset时,首先需要设置环境并安装必要的依赖项,可以通过conda或venv创建虚拟环境。接着,下载并准备VCoR和Stanford Cars数据集,确保数据结构符合要求。随后,可以进行颜色分类模型的训练,使用提供的代码进行线性探测、微调或两者的结合。最后,通过运行推理脚本,利用训练好的模型对Stanford Cars数据集进行细化处理,生成包含颜色信息的细化标注文件。
背景与挑战
背景概述
Refined Stanford Cars Dataset是在Stanford Cars数据集的基础上进行细化的版本,由研究人员通过引入颜色信息,将原本的196个车型类别扩展至1288个类别,每个类别代表特定的车型与颜色的组合。该数据集的创建旨在提升车辆分类的粒度,特别是在车辆识别领域,通过结合颜色信息来增强模型的区分能力。这一改进不仅丰富了数据集的多样性,还为车辆识别任务提供了更为精细的分类标准,进一步推动了计算机视觉领域的发展。
当前挑战
Refined Stanford Cars Dataset的构建过程中面临的主要挑战包括:首先,如何准确地从图像中提取并分类车辆颜色,这需要对颜色分类模型进行精细的调优。其次,由于颜色信息的引入,数据集的类别数量大幅增加,导致模型训练的复杂性和计算资源需求显著提升。此外,颜色分类模型的性能直接影响数据集的细化效果,因此模型的选择和训练策略至关重要。最后,数据集的扩展也带来了标注和管理的复杂性,确保每个类别的准确性和一致性是一个持续的挑战。
常用场景
经典使用场景
Refined Stanford Cars Dataset的经典使用场景主要集中在车辆识别与分类任务中。通过引入颜色信息,该数据集将原本的196个车型类别细化为1,288个类别,每个类别代表特定的车型与颜色的组合。这种细粒度的分类使得模型能够更精确地识别和区分不同颜色和车型的车辆,尤其适用于需要高精度车辆识别的应用场景,如自动驾驶、交通监控和车辆检索系统。
衍生相关工作
基于Refined Stanford Cars Dataset,研究者们开展了多项相关工作,特别是在车辆颜色识别和多模态学习领域。例如,一些研究通过该数据集训练和评估车辆颜色分类模型,进一步提升了颜色识别的准确性。此外,该数据集还激发了多模态学习方法的研究,探索如何有效结合图像和颜色信息进行更精确的车辆识别。这些衍生工作不仅丰富了车辆识别领域的研究内容,还为相关技术的实际应用提供了理论支持。
数据集最近研究
最新研究方向
在计算机视觉领域,Refined Stanford Cars Dataset的最新研究方向主要集中在通过增强数据集的分类粒度来提升车辆识别的精确度。该数据集通过引入颜色信息,将原有的196个车型类别细化为1,288个类别,每个类别代表特定车型与颜色的组合。这一改进不仅提高了数据集的多样性和复杂性,还为车辆识别任务提供了更为精细的分类基础。研究者们利用Vehicle Color Recognition (VCoR)数据集对颜色分类模型进行微调或线性探测,并将这些模型应用于Stanford Cars数据集的颜色预测,从而实现了数据集的精细化。这一研究方向不仅推动了车辆识别技术的发展,还为自动驾驶、智能交通系统等领域的应用提供了更为精确的数据支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Movies Dataset

这个数据集包含电影的详细信息,包括电影名称、评分、类型、年份、发布日期、IMDb评分、投票数、导演、编剧、主演、制作国家、预算、总收入、制作公司和电影时长。

github 收录