five

Derivation of formulas for (p,p') via an isobaric analog resonance by H. L. Harney (1967-1969)|核物理数据集|反应截面数据集

收藏
Mendeley Data2024-01-31 更新2024-06-26 收录
核物理
反应截面
下载链接:
https://data.mendeley.com/datasets/d2fjdn8vp6
下载链接
链接失效反馈
资源简介:
Elementary derivation of cross section formulas for (p,p') via an isobaric analog resonance (IAR) (a) german (b) english
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

fruits_weight

该数据集用于训练和改进YOLOv8-seg模型,用于水果成熟度的识别与分割。数据集包含12个类别,涵盖了从生鲜水果到成熟水果的不同阶段,具体类别包括:生芒果(Raw_Mango)、熟芒果(Ripe_Mango)、熟葡萄(ripe grape)、熟苹果(ripe_apple)、熟橙子(ripe_orange)、熟石榴(ripe_pomegranate)、半熟葡萄(semiripe grape)、半熟苹果(semiripe_apple)、未熟葡萄(unripe grape)、未熟苹果(unripe_apple)、未熟橙子(unripe_orange)和未熟石榴(unripe_pomegranate)。数据集的丰富性和多样性使其成为训练水果成熟度识别模型的理想选择。

github 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录