five

"Table 23" of "Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt{s} =$ 13 TeV"|高能物理数据集|顶夸克数据集

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
高能物理
顶夸克
下载链接:
https://www.hepdata.net/record/85977
下载链接
链接失效反馈
资源简介:
Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at sqrt{s} = 13 TeV are measured as a function of kinematic variables of the top quarks and the top quark-antiquark (ttbar) system. In addition, kinematic variables and multiplicities of jets associated with the ttbar production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8/fb. The measurements are performed in the lepton+jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the ttbar system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

DAT

DAT是一个统一的跨场景跨领域基准,用于开放世界无人机主动跟踪。它提供了24个视觉复杂的场景,以评估算法的跨场景和跨领域泛化能力,并具有高保真度的现实机器人动力学建模。

github 收录

DeepFashion

DeepFashion数据集是一个大规模的时尚识别和检索数据集,包含289,222张多样化的衣物图像,以及详细的边界框、时尚地标、类别和属性标注。该数据集由多媒体实验室,香港中文大学开发,用于支持非商业研究及教育目的。

github 收录

Anti-UAV

Anti-UAV数据集由中国科学院大学创建,专注于无人机跟踪研究。该数据集包含318对RGB-T视频,总计超过580,000个手动标注的边界框,适用于长距离无人机跟踪。数据集内容丰富,包括多种场景和光照条件下的视频序列,支持单模态和多模态无人机跟踪。创建过程中,数据集通过精细的标注策略确保高质量。该数据集的应用领域主要集中在无人机监控和跟踪技术的发展,旨在解决无人机在复杂环境中的状态感知问题。

arXiv 收录

FLIR Dataset

该数据集主要提供三种类型的热成像图像:训练集包含8862张热成像图像,验证集包含1366张热成像图像,视频集包含4224张热成像图像。这些图像被用于训练YOLOv3检测器,并在验证集上报告了mAP。视频集用于跟踪检测到的对象。

github 收录