five

Data from: Oxidative stress experienced during early development influences the offspring phenotype|发育生物学数据集|环境影响数据集

收藏
Mendeley Data2024-04-12 更新2024-06-29 收录
发育生物学
环境影响
下载链接:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.q83bk3jg1
下载链接
链接失效反馈
资源简介:
Oxidative stress (OS) experienced early in life can affect an individual’s phenotype. However, its consequences for the next generation remain largely unexplored. We manipulated the OS level endured by zebra finches (Taeniopygia guttata) during their development by transitorily inhibiting the synthesis of the key antioxidant glutathione (‘early-high-OS’). The offspring of these birds and control parents were cross-fostered at hatching to enlarge or reduce its brood size. Independently of parents’ early-life OS levels, the chicks raised in enlarged broods showed lower erythrocyte glutathione levels, revealing glutathione sensitivity to environmental conditions. Control (“early-low-OS”) biological mothers produced females, not males, that attained a higher body mass when raised in a benign environment (i.e. the reduced brood). In contrast, biological mothers exposed to early-life OS produced heavier males, not females, when allocated in reduced broods. Early-life OS also affected the parental rearing capacity because 12d-old nestlings raised by a foster pair with both early-high-OS members grew shorter legs (tarsus) than chicks from other groups. The results indicate that environmental conditions during development can affect early glutathione levels, which may, in turn, influence the next generation through both pre- and postnatal parental effects. The results also demonstrate that early-life OS can constrain the offspring phenotype.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录

Awesome AIGC Image Detection

这是一个新的AIGC图像检测基准,包含六个数据集和十种检测方法。每个数据集都基于相应的代码运行,并提供了运行代码和环境以及结果日志。

github 收录

World Values Survey (WVS)

世界价值观调查(World Values Survey, WVS)是一个跨国的、长期的学术调查项目,旨在研究全球不同国家和地区的社会、政治和文化价值观的变化。该调查涵盖了从1981年至今的多个波次,每次调查都包含一系列关于个人价值观、社会规范、政治态度、宗教信仰、家庭观念等方面的问题。数据集包括了来自全球100多个国家和地区的调查结果,提供了丰富的社会科学研究数据。

www.worldvaluessurvey.org 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录