five

Data from: Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma)

收藏
DataONE2017-01-31 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Biodiversity reduction and loss continues to progress at an alarming rate, and thus there is widespread interest in utilizing rapid and efficient methods for quantifying and delimiting taxonomic diversity. Single-locus species-delimitation methods have become popular, in part due to the adoption of the DNA barcoding paradigm. These techniques can be broadly classified into tree-based and distance-based methods depending on whether species are delimited based on a constructed genealogy. Although the relative performance of these methods has been tested repeatedly with simulations, additional studies are needed to assess congruence with empirical data. We compiled a large data set of mitochondrial ND4 sequences from horned lizards (Phrynosoma) to elucidate congruence using four tree-based (single-threshold GMYC, multiple-threshold GMYC, bPTP, mPTP) and one distance-based (ABGD) species delimitation models. We were particularly interested in cases with highly uneven sampling and/or large differences in intraspecific diversity. Results showed a high degree of discordance among methods, with multiple-threshold GMYC and bPTP suggesting an unrealistically high number of species (29 and 26 species within the P. douglasii complex alone). The single-threshold GMYC model was the most conservative, likely a result of difficulty in locating the inflection point in the genealogies. mPTP and ABGD appeared to be the most stable across sampling regimes and suggested the presence of additional cryptic species that warrant further investigation. These results suggest that the mPTP model may be preferable in empirical data sets with highly uneven sampling or large differences in effective population sizes of species.
创建时间:
2017-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UIEB, U45, LSUI

本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。

github 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录

THUCNews

THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。本次比赛数据集在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。提供训练数据共832471条。

github 收录

大学生运动和体质健康数据集(2014-2023)

《大学生运动与体质健康数据集(2014-2023)》涵盖了大学生群体在运动能力、基础身体形态、身体机能及身体素质等多个方面的关键基础数据。该数据集的采集时间跨度为2014年至2023年,样本采集自全国34个省级行政区域,共计123281名大学生参与,平均年龄为20.53岁。建立大学生运动和体质健康数据集可以准确把握学生体质健康的整体水平和变化趋势,了解大学生运动和体质健康状况,对指导个性化健康干预、优化体育教育资源配置、支持促进科学研究以及提高公众健康意识等均具有重要意义。

国家人口健康科学数据中心 收录

Houston2013, Berlin, Augsburg

本研究发布了三个多模态遥感基准数据集:Houston2013(高光谱和多光谱数据)、Berlin(高光谱和合成孔径雷达数据)和Augsburg(高光谱、合成孔径雷达和数字表面模型数据)。这些数据集用于土地覆盖分类,旨在通过共享和特定特征学习模型(S2FL)评估多模态基线。数据集包含不同模态和分辨率的图像,适用于评估和开发新的遥感图像处理技术。

arXiv 收录