five

Intensive non-paretic arm training in chronic stroke patients with severe paresis improves functional independence without compromising paretic arm function|中风康复数据集|功能训练数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
中风康复
功能训练
下载链接:
https://scholarsphere.psu.edu/resources/4186111b-32ed-4564-a9b6-dcc41e33ad90
下载链接
链接失效反馈
资源简介:
We previously demonstrated functionally limiting hemisphere specific motor deficits in the non-paretic, ipsilesional arm of chronic stroke patients. In a small pilot study in patients with severe paresis, we showed that non-paretic arm deficits can improve with non-paretic arm training. We now extend this study to a larger two-track cross-over design that includes both non-paretic arm training and sham-training. We ask whether non-paretic arm training can improve functional independence, without detriment to the paretic arm, and we explore the durability of these effects. This report includes only one track of our study during year 1, for which we have collected data in stroke survivors with moderate to severe paresis over a 12-week interval with 5 testing sessions that assessed non-paretic arm function, functional independence, and paretic arm impairment. After the initial test (Test 1), participants were retested (Test 2) after 3-weeks to confirm test re-test reliability and stability in baseline performance. During the following 3 weeks, participants engage in intense ipsilesional arm training for three 1.5-hour sessions per week. During training, patients engage in virtual reality (VR) games that required rapid and accurate motions of the non-paretic arm for 45 minutes. Following VR activities, the patients engage in real-life activities involving resistive exercise, and challenging use of the non-paretic arm. After a post-test (Test 3), participants engage in 3 weeks of sham training involving playing computer and board games to control for non-specific effects. They are again tested following the sham training (Test 4), and again after 3 weeks to assess durability of training (Test 5). For the non-paretic arm, our primary dependent measures are: 1) Jebsen-Taylor Hand Function Test (JTHFT), 2) The motor subscale of the Functional Independence Measure (FIM), and 3) Hand dynamometry. For the paretic arm, our primary dependent measure is the Fugl-Meyer Assessment. Our preliminary results indicate substantial improvements in response to non-paretic arm training in non-paretic arm performance (JTHFT) and functional independence (FIM), but not in general strength (dynamometry). This suggests that improvements are in coordination. Importantly, the paretic arm shows a modest, but significant reduction in impairment. Our results suggest that training of the ipsilesional arm in stroke survivors can improve non-paretic arm performance, which generalizes to improve functional independence. These improvements are durable over time, and this training is not detrimental to paretic arm function, and may slightly decrease paretic arm impairment.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

MAV-VID, Drone-vs-Bird, Anti-UAV

本研究涉及三个数据集:MAV-VID、Drone-vs-Bird和Anti-UAV,总计包含241个视频,共计331,486张图像。这些数据集由杜伦大学创建,用于无人机视觉检测和跟踪的研究。数据集内容丰富,包括从地面和无人机搭载的摄像头捕获的图像,涵盖了多种环境和条件。创建过程中,数据集经过精心标注和处理,以确保数据质量。这些数据集主要用于评估和改进无人机检测和跟踪技术,特别是在复杂环境和动态场景中的应用。

arXiv 收录

Nexdata/chinese_dialect

该数据集包含25,000小时的中文方言语音数据,收集自多个方言区域的本地方言使用者,涵盖闽南语、粤语、四川话、河南话、东北话、上海话、维吾尔语和藏语等。数据格式为16kHz、16bit、未压缩的wav文件,单声道。句子准确率超过95%。数据集支持的任务包括自动语音识别(ASR)和音频说话人识别。

hugging_face 收录

DAT

DAT是一个统一的跨场景跨领域基准,用于开放世界无人机主动跟踪。它提供了24个视觉复杂的场景,以评估算法的跨场景和跨领域泛化能力,并具有高保真度的现实机器人动力学建模。

github 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录