five

Data from: Are shy individuals less behaviorally variable? Insights from a captive population of mouse lemurs

收藏
DataONE2013-06-17 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Increasingly, individual variation in personality has become a focus of behavioral research in animal systems. Boldness and shyness, often quantified as the tendency to explore novel situations, are seen as personality traits important to the fitness landscape of individuals. Here we tested for individual differences within and across contexts in behavioral responses of captive mouse lemurs (Microcebus murinus) to novel objects, novel foods, and handling. We report consistent differences in behavioral responses for objects and handling. We also found that the responses to handling and novel objects were correlated and repeatable. Lastly, we show that shyer individuals may show less variability in their behavioral responses. This study provides new information on the potential for behavioral syndromes in this species and highlights differences in the degree to which behavioral types (e.g., shy/bold) vary in their behavioral responses.
创建时间:
2013-06-17
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

SATIR

SATIR是由北京航空航天大学创建的大规模热红外图像分割数据集,包含超过100,000张带有像素级标注的图像。该数据集涵盖了城市、室内外、航空等多种场景,旨在通过利用Segment Anything Model (SAM) 生成的伪标签进行预训练,提高特定类别的热红外图像分割精度。数据集的创建过程涉及使用SAM模型对未标记的热红外图像进行分割,生成高质量的分割掩码,进而构建伪标签。SATIR数据集的应用领域主要集中在热红外图像的分割任务,特别是在标注困难的情况下,提供了一种有效的预训练解决方案。

arXiv 收录