five

Data from: Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models

收藏
DataONE2017-02-15 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
BAMM (Bayesian Analysis of Macroevolutionary Mixtures) is a statistical framework that uses reversible jump MCMC to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore and coauthors (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (1) BAMM's likelihood function is incorrect, because it does not account for unobserved rate shifts; (2) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (3) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA's numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that “unobserved rate shifts” appear to be irrelevant for biologically-plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version, when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the ∼20% of simulated trees in MEA's dataset for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth-death process and were thus poorly-suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that that the imperfect tools currently available to comparative biologists have provided and will continue to provide important insights into the diversification of life on Earth.
创建时间:
2017-02-15
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

HRSC2016

高分辨率船舶收集2016 (HRSC2016) 是用于科学研究的数据集。HRSC2016数据集 包含27种遥感特征目标。目前,HRSC2016中的所有图像都是从Google Earth收集的。

OpenDataLab 收录

全国7区34市54,655医生数据库: 职称,医院,科室 China 54,655 Doctors Data: Title, Hospital, Department in 34 Cities of 7 Regions

这是来自全国7大地区34个城市的54,655位医生信息数据库。每位医生记录中包含有职称,所在医院,所在科室,擅长领域,主诊说明和职业经历。整个医生数据库共有5个表。 In the China doctors database, there are 54,655 records with title, affiliated hospital, affiliated department, be good at, attending instruction and professional experience in each. These doctors are from 34 cities of 7 regions in...

DataSN 收录

SuMeyYao/ysmpubmedclt

该数据集的许可证为apache-2.0,主要用于表格问答任务,数据集语言为英语,大小介于1亿到10亿之间。

hugging_face 收录