five

ParClusterers Benchmark Suite (PCBS)|图聚类数据集|性能评估数据集

收藏
arXiv2024-11-15 更新2024-11-19 收录
图聚类
性能评估
下载链接:
https://github.com/ParAlg/ParClusterers
下载链接
链接失效反馈
资源简介:
ParClusterers Benchmark Suite (PCBS) 是一个用于评估和比较可扩展图聚类算法的高质量基准套件。该数据集由麻省理工学院和Google的研究人员创建,包含多种图聚类算法和工具,适用于社区检测、分类和密集子图挖掘等任务。PCBS不仅提供了多种图聚类算法的实现,还支持与其他图聚类框架的集成,便于研究人员进行系统性的性能评估。数据集的创建过程包括从SNAP库和新的空间及嵌入数据集中生成图数据,旨在解决大规模图聚类算法的性能和质量评估问题。
提供机构:
麻省理工学院
创建时间:
2024-11-15
AI搜集汇总
数据集介绍
main_image_url
构建方式
ParClusterers Benchmark Suite (PCBS) 是一个高度可扩展的并行图聚类算法集合和基准测试工具,旨在简化不同图聚类算法和实现的比较。该基准包括针对现代聚类用例的各种聚类算法,包括社区检测、分类和密集子图挖掘。PCBS 通过提供一个简单易用的平台,使用户能够运行和评估多个不同聚类算法的实例,这对于在给定任务上微调聚类性能以及基于不同感兴趣的度量(包括聚类质量和运行时间)比较不同的聚类算法非常有用。
使用方法
PCBS 的使用方法非常灵活,用户可以通过配置文件指定要基准测试的图、使用的线程数、运行的轮数、超时时间以及每个聚类算法尝试的参数集。PCBS 支持对每个图、每个聚类器、每个参数集和每轮实验的结果进行输出,并生成包含所有运行时间的 CSV 文件。此外,PCBS 还支持指定地面真值社区并计算聚类结果的统计数据,如精确度和召回率。通过这些功能,研究人员和实践者可以轻松地对不同的聚类算法进行全面和细致的比较。
背景与挑战
背景概述
The ParClusterers Benchmark Suite (PCBS) is a comprehensive collection of highly scalable parallel graph clustering algorithms and benchmarking tools, introduced by a collaborative team from MIT, University of Maryland, and Google. The suite aims to streamline the comparison of different graph clustering algorithms and implementations, targeting a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. Developed with a focus on shared-memory multi-core machines, PCBS provides a standardized way to evaluate and judge the quality-performance tradeoffs of scalable graph clustering algorithms, thereby facilitating fair, accurate, and nuanced evaluation in the future.
当前挑战
The primary challenge addressed by PCBS is the systematic comparison of a large and diverse set of graph clustering methods under various metrics, including clustering quality and running time. The suite tackles the lack of prior works that have conducted such a comprehensive comparison, particularly for parallel graph clustering algorithms. Additionally, the creation of PCBS involved overcoming the absence of real-world weighted graph datasets with ground truth for evaluating weighted graph clustering algorithms, leading to the contribution of new datasets that allow for thorough benchmarking. The suite also faces the challenge of ensuring scalability and accuracy of different shared-memory parallel graph clustering algorithms, which is crucial for handling large-scale datasets and multiple threads.
常用场景
经典使用场景
ParClusterers Benchmark Suite (PCBS) 是一个用于评估可扩展图聚类算法的综合工具集。其经典应用场景包括社区检测、向量嵌入聚类和密集子图挖掘。通过PCBS,研究人员可以轻松运行和评估多种聚类算法,从而在聚类质量和运行时间之间进行微调,并基于不同指标比较不同的聚类算法。
解决学术问题
PCBS 解决了在可扩展图聚类算法研究中常见的学术问题,即如何系统地比较和评估大量不同的图聚类方法及其对应实现。通过提供一个标准化的评估平台,PCBS 有助于公平、准确和细致地评估图聚类算法,从而推动该领域的研究进展。
实际应用
PCBS 在实际应用中具有广泛的应用场景,特别是在需要处理大规模图数据并进行高效聚类的领域。例如,在社交网络分析、计算生物学、机器学习和天体物理学等领域,PCBS 可以帮助研究人员和从业者快速评估和选择最适合其特定任务的聚类算法。
数据集最近研究
最新研究方向
在图聚类领域,ParClusterers Benchmark Suite (PCBS) 数据集的最新研究方向主要集中在对可扩展图聚类算法的细粒度分析和基准测试。研究者们通过PCBS平台,系统地比较了多种图聚类算法及其在不同应用场景下的性能,包括社区检测、分类和密集子图挖掘等。该研究不仅评估了算法的聚类质量和运行时间,还探讨了不同算法在质量与性能之间的权衡。此外,PCBS还支持对现有图聚类框架和系统的集成测试,为未来的图聚类算法评估提供了标准化方法,有助于推动该领域的发展和应用。
相关研究论文
  • 1
    The ParClusterers Benchmark Suite (PCBS): A Fine-Grained Analysis of Scalable Graph Clustering麻省理工学院 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录