five

ParClusterers Benchmark Suite (PCBS)|图聚类数据集|性能评估数据集

收藏
arXiv2024-11-15 更新2024-11-19 收录
图聚类
性能评估
下载链接:
https://github.com/ParAlg/ParClusterers
下载链接
链接失效反馈
资源简介:
ParClusterers Benchmark Suite (PCBS) 是一个用于评估和比较可扩展图聚类算法的高质量基准套件。该数据集由麻省理工学院和Google的研究人员创建,包含多种图聚类算法和工具,适用于社区检测、分类和密集子图挖掘等任务。PCBS不仅提供了多种图聚类算法的实现,还支持与其他图聚类框架的集成,便于研究人员进行系统性的性能评估。数据集的创建过程包括从SNAP库和新的空间及嵌入数据集中生成图数据,旨在解决大规模图聚类算法的性能和质量评估问题。
提供机构:
麻省理工学院
创建时间:
2024-11-15
AI搜集汇总
数据集介绍
main_image_url
构建方式
ParClusterers Benchmark Suite (PCBS) 是一个高度可扩展的并行图聚类算法集合和基准测试工具,旨在简化不同图聚类算法和实现的比较。该基准包括针对现代聚类用例的各种聚类算法,包括社区检测、分类和密集子图挖掘。PCBS 通过提供一个简单易用的平台,使用户能够运行和评估多个不同聚类算法的实例,这对于在给定任务上微调聚类性能以及基于不同感兴趣的度量(包括聚类质量和运行时间)比较不同的聚类算法非常有用。
使用方法
PCBS 的使用方法非常灵活,用户可以通过配置文件指定要基准测试的图、使用的线程数、运行的轮数、超时时间以及每个聚类算法尝试的参数集。PCBS 支持对每个图、每个聚类器、每个参数集和每轮实验的结果进行输出,并生成包含所有运行时间的 CSV 文件。此外,PCBS 还支持指定地面真值社区并计算聚类结果的统计数据,如精确度和召回率。通过这些功能,研究人员和实践者可以轻松地对不同的聚类算法进行全面和细致的比较。
背景与挑战
背景概述
The ParClusterers Benchmark Suite (PCBS) is a comprehensive collection of highly scalable parallel graph clustering algorithms and benchmarking tools, introduced by a collaborative team from MIT, University of Maryland, and Google. The suite aims to streamline the comparison of different graph clustering algorithms and implementations, targeting a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. Developed with a focus on shared-memory multi-core machines, PCBS provides a standardized way to evaluate and judge the quality-performance tradeoffs of scalable graph clustering algorithms, thereby facilitating fair, accurate, and nuanced evaluation in the future.
当前挑战
The primary challenge addressed by PCBS is the systematic comparison of a large and diverse set of graph clustering methods under various metrics, including clustering quality and running time. The suite tackles the lack of prior works that have conducted such a comprehensive comparison, particularly for parallel graph clustering algorithms. Additionally, the creation of PCBS involved overcoming the absence of real-world weighted graph datasets with ground truth for evaluating weighted graph clustering algorithms, leading to the contribution of new datasets that allow for thorough benchmarking. The suite also faces the challenge of ensuring scalability and accuracy of different shared-memory parallel graph clustering algorithms, which is crucial for handling large-scale datasets and multiple threads.
常用场景
经典使用场景
ParClusterers Benchmark Suite (PCBS) 是一个用于评估可扩展图聚类算法的综合工具集。其经典应用场景包括社区检测、向量嵌入聚类和密集子图挖掘。通过PCBS,研究人员可以轻松运行和评估多种聚类算法,从而在聚类质量和运行时间之间进行微调,并基于不同指标比较不同的聚类算法。
解决学术问题
PCBS 解决了在可扩展图聚类算法研究中常见的学术问题,即如何系统地比较和评估大量不同的图聚类方法及其对应实现。通过提供一个标准化的评估平台,PCBS 有助于公平、准确和细致地评估图聚类算法,从而推动该领域的研究进展。
实际应用
PCBS 在实际应用中具有广泛的应用场景,特别是在需要处理大规模图数据并进行高效聚类的领域。例如,在社交网络分析、计算生物学、机器学习和天体物理学等领域,PCBS 可以帮助研究人员和从业者快速评估和选择最适合其特定任务的聚类算法。
数据集最近研究
最新研究方向
在图聚类领域,ParClusterers Benchmark Suite (PCBS) 数据集的最新研究方向主要集中在对可扩展图聚类算法的细粒度分析和基准测试。研究者们通过PCBS平台,系统地比较了多种图聚类算法及其在不同应用场景下的性能,包括社区检测、分类和密集子图挖掘等。该研究不仅评估了算法的聚类质量和运行时间,还探讨了不同算法在质量与性能之间的权衡。此外,PCBS还支持对现有图聚类框架和系统的集成测试,为未来的图聚类算法评估提供了标准化方法,有助于推动该领域的发展和应用。
相关研究论文
  • 1
    The ParClusterers Benchmark Suite (PCBS): A Fine-Grained Analysis of Scalable Graph Clustering麻省理工学院 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

广东省标准地图

该数据类主要为广东省标准地图信息。标准地图依据中国和世界各国国界线画法标准编制而成。该数据包括广东省全图、区域地图、地级市地图、县(市、区)地图、专题地图、红色印迹地图等分类。

开放广东 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录

AAAR-1.0

AAAR-1.0数据集包含四个主要任务:方程推理、实验设计、论文弱点和评审评论。方程推理任务包含1049个样本,每个样本有四个字段:前文、后文、选项和答案。实验设计任务包含100篇论文,每篇论文包含文本数据和图像数据。论文弱点任务包含993篇论文,每篇论文包含文本数据和图像数据。评审评论任务的数据存储在另一个GitHub仓库中。

huggingface 收录

ECNU-SEA/SEA_data

该数据集包含四种类型的文件:原始PDF格式的论文、通过Nougat解析后的mmd文件、爬取的原始评审文本以及处理后的评审JSON文件。数据集来源于OpenReview,包括NeurIPS-2023和ICLR-2024的最新论文及其评审。

hugging_face 收录

全国兴趣点(POI)数据

  POI(Point of Interest),即兴趣点,一个POI可以是餐厅、超市、景点、酒店、车站、停车场等。兴趣点通常包含四方面信息,分别为名称、类别、坐标、分类。其中,分类一般有一级分类和二级分类,每个分类都有相应的行业的代码和名称一一对应。  POI包含的信息及其衍生信息主要包含三个部分:

CnOpenData 收录