five

Data from: Females mate with males with diminished pheomelanin-based coloration in the Eurasian nuthatch Sitta europaea

收藏
DataONE2018-06-11 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Sexual selection can drive the evolution of phenotypic traits because of female preferences for exaggerated trait expression in males. Sexual selection can also lead to the evolutionary loss of traits, a process to which female preferences for diminished male trait expression are hypothesized to contribute. However, empirical evidence of female preferences for diminished male traits is virtually lacking. Eurasian nuthatches Sitta europaea provide an opportunity to test this possibility, as a chestnut flank patch produced by the pigment pheomelanin is present since the first plumage of these birds and its color is more intense in nestlings in poor condition in our study population. It has been proposed that developing birds in poor condition may increase their production of pheomelanin as a detoxifying strategy. Female nuthatches may thus prefer mating with males showing flank feathers of diminished color, as this could indicate that males experienced good conditions early in development, which can positively affect the fitness of future generations. Here we show results according with this prediction in a wild population of Eurasian nuthatches, as adult males with lighter chestnut feathers paired earlier in the season, while chestnut coloration had no effect on female mating success. Chestnut color expression was not affected by the body condition of birds, suggesting that females obtain information on the body condition in early life of their potential mates and not on their current body condition. This constitutes one of the few examples of females mating with males showing diminished traits and provides the only explanation so far by which this process can occur.
创建时间:
2018-06-11
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

面试问题数据集

该数据集包含从技术内容自动提取的结构化问答对,用于研究和AI面试助手

github 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

ICESat-2 Data

ICESat-2 Data 是由美国国家航空航天局(NASA)发布的卫星数据集,主要用于全球冰层和陆地高程的测量。该数据集包括高精度激光测高数据,用于研究冰川、海冰、植被和地形变化。

icesat-2.gsfc.nasa.gov 收录

UIEB, U45, LSUI

本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。

github 收录