five

MEDEC|医疗错误检测数据集|自然语言处理数据集

收藏
arXiv2025-01-03 更新2024-12-31 收录
医疗错误检测
自然语言处理
下载链接:
https://github.com/abachaa/MEDEC
下载链接
链接失效反馈
资源简介:
MEDEC是由微软和华盛顿大学联合创建的医疗错误检测与纠正基准数据集,旨在评估语言模型在临床文本中检测和纠正错误的能力。该数据集包含3848条临床文本,涵盖了诊断、管理、治疗、药物治疗和病原体等五类常见错误。数据来源于美国三家医院的临床记录,并通过两种方法生成错误:一种基于医学考试题目,另一种基于真实临床记录。数据集的应用领域主要集中在医疗文档的自动验证和错误纠正,旨在提高医疗文档的准确性和一致性,减少医疗错误对临床决策的影响。
提供机构:
微软(健康与生命科学AI部门)和华盛顿大学(生物医学与健康信息学部门)
创建时间:
2024-12-26
AI搜集汇总
数据集介绍
main_image_url
构建方式
MEDEC数据集的构建采用了两种主要方法。第一种方法基于医学考试中的多选题,通过将错误答案注入到场景文本中,生成包含错误的临床笔记。第二种方法则利用真实临床笔记数据库,手动引入错误,确保错误类型涵盖诊断、管理、治疗、药物治疗和致病菌等五大类别。整个数据集由八名医学注释者参与标注,确保了数据的专业性和准确性。
使用方法
MEDEC数据集主要用于评估模型在医学错误检测和校正任务中的表现。使用该数据集时,研究者可以将任务分为三个子任务:错误标志预测、错误句子提取和错误句子校正。通过对比不同模型在这些子任务中的表现,可以评估其在医学文本验证和校正方面的能力。此外,该数据集还可用于医学教育领域,帮助提升临床推理能力。
背景与挑战
背景概述
MEDEC数据集由微软健康与生命科学AI团队与华盛顿大学生物医学与健康信息学团队于2024年12月30日联合发布,旨在为临床笔记中的医疗错误检测与纠正提供首个公开基准。该数据集包含3,848条临床文本,涵盖诊断、管理、治疗、药物治疗和病原体等五类常见错误。MEDEC的创建基于对美国医疗系统中临床笔记的分析,特别是针对大语言模型(LLMs)在医疗文本生成中的潜在错误进行验证的需求。该数据集已在MEDIQA-CORR 2024共享任务中用于评估17个参与系统的性能,结果显示尽管LLMs在错误检测与纠正方面表现良好,但仍未达到医生的水平。MEDEC的发布为医疗文本验证模型的开发提供了重要参考,推动了医疗AI在临床文档生成中的安全应用。
当前挑战
MEDEC数据集在构建与应用过程中面临多重挑战。首先,医疗错误检测与纠正任务需要模型具备深厚的医学知识与推理能力,而现有LLMs在处理复杂医疗问题时仍存在局限性,尤其是在生成逻辑一致且准确的文本方面。其次,数据集的构建依赖于人工标注,涉及大量医疗专业知识的应用,确保错误注入的准确性与合理性成为一大难点。此外,医疗文本的多样性与复杂性使得模型在识别与纠正错误时容易产生误判,特别是在处理罕见病例或复杂诊断时。最后,现有评估指标在捕捉医疗文本中的语义一致性方面存在不足,难以全面反映模型的真实性能。这些挑战为未来研究提供了方向,包括开发更专业的医疗语言模型与改进评估方法。
常用场景
经典使用场景
MEDEC数据集在医学错误检测与纠正领域具有广泛的应用,尤其是在临床笔记的自动验证和修正任务中。该数据集通过提供包含诊断、管理、治疗、药物治疗和致病菌等五类错误的临床文本,为研究人员和开发者提供了一个标准化的基准。其经典使用场景包括评估大型语言模型(LLMs)在检测和纠正医学错误方面的能力,尤其是在临床文档生成和审核过程中,确保生成的文本符合医学准确性和一致性。
解决学术问题
MEDEC数据集解决了医学文本自动验证中的关键问题,尤其是在临床笔记中检测和纠正错误的挑战。通过提供多样化的错误类型和真实的临床文本,该数据集为研究人员提供了一个评估模型在医学知识推理和错误修正能力上的标准化工具。其意义在于推动了医学自然语言处理领域的发展,尤其是在提高临床文档的准确性和安全性方面,为LLMs在医疗领域的应用提供了重要的验证基准。
实际应用
MEDEC数据集在实际应用中具有重要的价值,尤其是在医疗机构的临床文档审核和生成过程中。通过使用该数据集,医疗机构可以开发自动化工具,用于检测和纠正临床笔记中的错误,从而提高文档的准确性和可靠性。此外,该数据集还可用于培训医疗专业人员,帮助他们识别和修正常见的医学错误,进一步提升临床决策的质量和患者安全。
数据集最近研究
最新研究方向
MEDEC数据集作为首个公开的医疗错误检测与校正基准,近年来在医疗自然语言处理领域引起了广泛关注。随着大型语言模型(LLMs)在医疗问答任务中的表现逐渐超越人类平均水平,其在医疗文本生成与验证中的应用潜力日益凸显。然而,LLMs在生成或验证医疗文本时仍存在幻觉或错误信息的风险,这促使研究者们开发了MEDEC数据集,以评估模型在检测和校正临床笔记中错误的能力。该数据集涵盖了诊断、管理、治疗、药物治疗和病原体等五类常见错误,并通过与医学专家的对比实验,揭示了LLMs在医疗错误检测与校正任务中的局限性。尽管LLMs在错误检测方面表现良好,但在校正任务中仍不及医学专家,这表明模型在处理复杂医疗推理任务时仍需进一步提升。未来研究将聚焦于开发更精确的评估指标、优化模型提示策略,以及探索专门针对医疗领域的语言模型,以进一步提升LLMs在医疗文档生成与验证中的安全性和可靠性。
相关研究论文
  • 1
    MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes微软健康与生命科学人工智能, 华盛顿大学生物医学与健康信息学 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录