five

Molecular mechanisms of seasonal brain shrinkage and regrowth in Sorex araneus

收藏
DataONE2023-10-05 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/sha256:672c3b4e7ac020a37a7ef3d55010b71c8897849b8a51687a628661cbabead197
下载链接
链接失效反馈
资源简介:
Human brains typically grow through development, then remain the same size in adulthood, and often shrink through age-related degeneration that induces cognitive decline and impaired functionality. In most cases, however, the neural and organismal changes that accompany shrinkage, especially early in the process, remain unknown. Paralleling neurodegenerative phenotypes, the Eurasian common shrew Sorex araneus, shrinks its brain in autumn through winter, but then reverses this process by rapidly regrowing the brain come spring. To identify the molecular underpinnings and parallels to human neurodegeneration of this unique brain size change, we analyzed multi-organ, season-specific transcriptomics and metabolomic data. Simultaneous with brain shrinkage, we discovered system-wide metabolic shifts from lipid to glucose metabolism, as well as neuroprotection of brain metabolic homeostasis through reduced cholesterol efflux. These mechanisms rely on a finely tuned brain-liver crosstalk tha...
创建时间:
2023-11-03
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

STKit

STKit是一个旨在增强视觉语言模型(VLMs)在动态视频中进行时空推理能力的数据集,包含现实世界视频的3D注释,详细描述了对象的运动动力学,如旅行距离、速度、移动方向等。该数据集通过结合标注数据和伪标签数据,支持LLaVA-OneVision模型的微调,以生成具备时空推理能力的ST-VLM模型。

arXiv 收录