five

2WikiMultiHopQA|多跳问答数据集|机器阅读理解数据集

收藏
arXiv2020-11-12 更新2024-06-21 收录
多跳问答
机器阅读理解
下载链接:
https://github.com/Alab-NII/2wikimultihop
下载链接
链接失效反馈
资源简介:
2WikiMultiHopQA是一个大规模、高质量的多跳问答数据集,由日本的高级研究大学院大学和国家信息学研究所创建。该数据集包含192,606条数据,旨在通过要求模型阅读多个段落来测试推理和推断技能。数据集通过结合结构化和非结构化数据,引入了证据信息,包含多跳问题的推理路径,有助于解释预测和评估模型的推理能力。数据集创建过程中,设计了详细的流程和模板,确保问题的多跳步骤和质量。应用领域包括机器阅读理解,旨在解决需要复杂推理的问答问题。
提供机构:
高级研究大学院大学,神奈川,日本
创建时间:
2020-11-02
AI搜集汇总
数据集介绍
main_image_url
构建方式
2WikiMultiHopQA数据集的构建,旨在通过结合维基百科和维基数据中的结构化和非结构化数据,创建一个包含推理路径证据信息的多跳问答数据集。数据集的生成过程包括三个主要步骤:创建模板集、生成数据和后处理生成的数据。首先,根据HotpotQA数据集中比较问题的训练数据,使用Spacy工具提取命名实体识别标签和标签,并创建一系列模板。接着,利用这些模板和实体信息生成比较问题、推理问题、组合问题和桥接比较问题。最后,对生成的数据进行后处理,以确保每个问题只有一个答案,并平衡是/否问题的数量。
特点
2WikiMultiHopQA数据集的特点包括:1)提供从问题到答案的全面解释;2)包含推理路径证据信息,有助于解释预测和评估模型的推理能力;3)使用逻辑规则生成自然但需要多跳推理的问题;4)包含四种类型的问题:比较、推理、组合和桥接比较。
使用方法
使用2WikiMultiHopQA数据集的方法包括:1)使用数据集进行多跳问答模型的训练和评估;2)利用数据集中的证据信息来解释预测结果;3)通过分析数据集中的推理类型和答案类型,研究多跳推理的能力;4)使用基准模型进行评估,并与人类表现进行比较,以评估数据集的难度和挑战性。
背景与挑战
背景概述
2WikiMultiHopQA数据集的创建旨在为机器阅读理解领域提供一个能够测试推理和推理能力的新数据集。这个数据集由Xanh Ho、Anh-Khoa Duong Nguyen、Saku Sugawara和Akiko Aizawa等研究人员于2020年构建,他们来自日本神奈川县的先进科学研究生院和东京国立信息学研究所。2WikiMultiHopQA数据集的创建是为了解决现有数据集中缺乏对推理过程的完整解释以及许多示例不需要多跳推理的问题。该数据集使用了结构化和非结构化数据,并引入了证据信息,其中包含了多跳问题的推理路径。证据信息的好处在于提供了预测的全面解释,并能够评估模型的推理能力。研究人员精心设计了一个管道和一组模板,在生成问题-答案对时保证了多跳步骤和问题的质量。此外,他们还利用了Wikidata的结构化格式,并使用逻辑规则来创建自然但仍然需要多跳推理的问题。通过实验,他们证明了该数据集对多跳模型具有挑战性,并确保了多跳推理的必要性。
当前挑战
2WikiMultiHopQA数据集面临的挑战主要包括:1)解决领域问题的挑战:该数据集旨在测试推理和推理能力,要求模型阅读多个段落来回答给定的问题。然而,现有的数据集并没有提供从问题到答案的推理过程的完整解释,并且许多示例不需要多跳推理来回答问题。2)构建过程中的挑战:在构建过程中,研究人员面临了如何生成包含多跳步骤和高质量问题的数据集的挑战。他们通过使用预定义的模板和逻辑规则来生成问题,并确保了问题的多跳性质和质量。此外,他们还利用了Wikidata的结构化格式来创建自然但仍然需要多跳推理的问题。在数据集的生成过程中,他们还面临了如何处理Wikipedia和Wikidata之间信息不匹配的问题。为了解决这一问题,他们使用了启发式方法来排除不匹配的案例,并通过实验验证了数据集的质量。
常用场景
经典使用场景
2WikiMultiHopQA数据集主要用于评估和训练机器阅读理解模型的多跳推理能力。该数据集要求模型阅读多个段落,并根据问题进行多跳推理以找到答案。数据集中的每个问题都包含证据信息,解释从问题到答案的推理路径,这使得模型不仅需要理解文本内容,还需要理解逻辑关系和推理过程。
实际应用
2WikiMultiHopQA数据集在实际应用中,可以用于评估和训练机器阅读理解模型的多跳推理能力,帮助模型更好地理解和解释文本内容。此外,该数据集还可以用于研究多跳推理的相关问题,如推理过程解释、推理能力评估等。同时,由于该数据集是基于维基百科和维基数据构建的,因此还可以用于研究知识图谱和文本数据的交叉应用问题。
衍生相关工作
2WikiMultiHopQA数据集的发布,促进了多跳推理相关研究的发展。基于该数据集,研究人员可以设计和开发更先进的机器阅读理解模型,并探索多跳推理的相关问题。此外,2WikiMultiHopQA数据集的发布,还为其他多跳数据集的构建提供了参考和借鉴,推动了多跳推理研究的进一步发展。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

38-Cloud

该数据集包含38幅Landsat 8场景图像及其手动提取的像素级云检测地面实况。数据集被分割成多个384*384的补丁,适合深度学习语义分割算法。训练集有8400个补丁,测试集有9201个补丁。每个补丁包含4个对应的谱通道:红色、绿色、蓝色和近红外。

github 收录

TT100K - Tsinghua-Tencent 100K

TT100K数据集是一个用于交通标志检测和识别的大规模数据集,包含100,000张标注的交通标志图像。该数据集主要用于计算机视觉和自动驾驶领域的研究。

cg.cs.tsinghua.edu.cn 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录